-
Previous Article
Self-adjoint, globally defined Hamiltonian operators for systems with boundaries
- CPAA Home
- This Issue
-
Next Article
Solutions of a pure critical exponent problem involving the half-laplacian in annular-shaped domains
Unbounded solutions of the nonlocal heat equation
1. | Departamento de Matemáticas, U. Carlos III de Madrid, 28911 Leganés, Spain |
2. | Laboratoire de Mathématiques et Physique Théorique, U. F. Rabelais, Parc de Grandmont, 37200 Tours, France |
3. | Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid |
References:
[1] |
N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data, Trans. Amer. Math. Soc., 361 (2009), 2527-2566.
doi: 10.1090/S0002-9947-08-04758-2. |
[2] |
C. Brändle and E. Chasseigne, Large deviations estimates for some non-local equations. Fast decaying kernels and explicit bounds, Nonlinear Analysis, 71 (2009), 5572-5586.
doi: 10.1016/j.na.2009.04.059. |
[3] |
C. Brändle and E. Chasseigne, Large Deviations estimates for some non-local equations. General bounds and applications,, to appear in Trans. Amer. Math. Soc, ().
|
[4] |
P. Carr, H. Geman, D. B. Madan and M. Yor, Stochastic volatility for Lévy processes, Math. Finance, 13 (2003), 345-382.
doi: 10.1111/1467-9965.00020. |
[5] |
E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291.
doi: 10.1016/j.matpur.2006.04.005. |
[6] |
E. Chasseigne and R. Ferreira, Isothermalization for a Non-local Heat Equation,, preprint, ().
|
[7] |
F. John, "Partial Differential Equations," 4nd edition, Applied Mathematical Sciences, 1, Springer-Verlag, New York, 1982. |
show all references
References:
[1] |
N. Alibaud and C. Imbert, Fractional semi-linear parabolic equations with unbounded data, Trans. Amer. Math. Soc., 361 (2009), 2527-2566.
doi: 10.1090/S0002-9947-08-04758-2. |
[2] |
C. Brändle and E. Chasseigne, Large deviations estimates for some non-local equations. Fast decaying kernels and explicit bounds, Nonlinear Analysis, 71 (2009), 5572-5586.
doi: 10.1016/j.na.2009.04.059. |
[3] |
C. Brändle and E. Chasseigne, Large Deviations estimates for some non-local equations. General bounds and applications,, to appear in Trans. Amer. Math. Soc, ().
|
[4] |
P. Carr, H. Geman, D. B. Madan and M. Yor, Stochastic volatility for Lévy processes, Math. Finance, 13 (2003), 345-382.
doi: 10.1111/1467-9965.00020. |
[5] |
E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291.
doi: 10.1016/j.matpur.2006.04.005. |
[6] |
E. Chasseigne and R. Ferreira, Isothermalization for a Non-local Heat Equation,, preprint, ().
|
[7] |
F. John, "Partial Differential Equations," 4nd edition, Applied Mathematical Sciences, 1, Springer-Verlag, New York, 1982. |
[1] |
Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029 |
[2] |
Shixiu Zheng, Zhilei Xu, Huan Yang, Jintao Song, Zhenkuan Pan. Comparisons of different methods for balanced data classification under the discrete non-local total variational framework. Mathematical Foundations of Computing, 2019, 2 (1) : 11-28. doi: 10.3934/mfc.2019002 |
[3] |
Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255 |
[4] |
Yong-Kui Chang, Xiaojing Liu. Time-varying integro-differential inclusions with Clarke sub-differential and non-local initial conditions: existence and approximate controllability. Evolution Equations and Control Theory, 2020, 9 (3) : 845-863. doi: 10.3934/eect.2020036 |
[5] |
Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126 |
[6] |
Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 |
[7] |
Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347 |
[8] |
Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115 |
[9] |
Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203 |
[10] |
Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems and Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036 |
[11] |
Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511 |
[12] |
Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037 |
[13] |
Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014 |
[14] |
Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715 |
[15] |
Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487 |
[16] |
Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551 |
[17] |
Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319 |
[18] |
Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475 |
[19] |
Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132 |
[20] |
Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]