Advanced Search
Article Contents
Article Contents

Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations

Abstract Related Papers Cited by
  • In this paper, we use the Perron method to prove the existence of viscosity solutions with asymptotic behavior at infinity to fully nonlinear uniformly elliptic equations in $R^n$.
    Mathematics Subject Classification: Primary: 35J60.


    \begin{equation} \\ \end{equation}
  • [1]

    J. G. Bao, Fully nonlinear elliptic equations on general domains, Canad. J. Math., 54 (2002), 1121-1141.doi: 10.4153/CJM-2002-042-9.


    Luis A. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations," Colloquium Publications, 43, American Mathematical Society, Providence, RI, 1995.


    X. Cabré and Luis A. Caffarelli, Regularity for viscosity solutions of fully nonlinear equations $F(D^2u)=0$, Topol. Methods Nonlinear Anal., 6 (1995), 31-48.


    L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math., 56 (2003), 549-583.doi: 10.1002/cpa.10067.


    L. M. Dai and J. G. BaoEntire solutions with asymptotic behavior of Hessian equations, Adv. Math. (China), in press.


    Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math., 35 (1982), 333-363.doi: 10.1002/cpa.3160350303.


    D. Gilbarg and Neil S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd edition, Springer-Verlag, Berlin, 1983.


    H. Ishii, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math., 42 (1989), 15-45.doi: 10.1002/cpa.3160420103.


    N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain. (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 47 (1983), 75-108.


    O. Savin, Entire solutions to a class of fully nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 369-405.


    B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE, Arch. Ration. Mech. Anal., 195 (2010), 579-607.doi: 10.1007/s00205-009-0218-9.

  • 加载中

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint