Citation: |
[1] |
G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.doi: 10.1023/A:1010602715526. |
[2] |
G. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.doi: 10.1090/S0894-0347-00-00345-3. |
[3] |
E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268.doi: 10.1007/BF01404309. |
[4] |
X. Cabré and A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of $R^n$, C. R. Math. Acad. Sci. Paris, 338 (2004), 769-774.doi: 10.1016/j.crma.2004.03.013. |
[5] |
X. Cabré and J. Terra, Saddle-shaped solutions of bistable diffusion equation in all of $R^{2m}$, J. Eur. Math. Soc. (JEMS), 11 (2009), 819-843.doi: 10.4171/JEMS/168. |
[6] |
L. Caffarelli, N. Garofalo and F. Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math., 47 (1994), 1457-1473.doi: 10.1002/cpa.3160471103. |
[7] |
E. De Giorgi, Convergence problems for functionals and operators, in "Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978)," Pitagora, Bologna, (1979), 131-138. |
[8] |
M. Del Pino, M. Kowalczyk and J. Wei, On De Giorgi conjecture in dimension $N\geq 9$, to appear in Ann. of Math., arXiv:0806.3141. |
[9] |
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.doi: 10.1007/s002080050196. |
[10] |
D. Jerison and D. Monneau, Towards a counter-example to a conjecture of De Giorgi in high dimensions, Ann. Mat. Pura Appl., 183 (2004), 439-467.doi: 10.1007/s10231-002-0068-7. |
[11] |
L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684.doi: 10.1002/cpa.3160380515. |
[12] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78.doi: 10.4007/annals.2009.169.41. |
[13] |
S. Villegas, Asymptotic behavior of stable radial solutions of semilinear elliptic equations in $R^N$, J. Math. Pures Appl., 88 (2007), 241-250.doi: 10.1016/j.matpur.2007.06.004. |