Advanced Search
Article Contents
Article Contents

Nonexistence of nonconstant global minimizers with limit at $\infty$ of semilinear elliptic equations in all of $R^N$

Abstract Related Papers Cited by
  • We prove nonexistence of nonconstant global minimizers with limit at infinity of the semilinear elliptic equation $-\Delta u=f(u)$ in the whole $R^N$, where $f\in C^1(R)$ is a general nonlinearity and $N\geq 1$ is any dimension. As a corollary of this result, we establish nonexistence of nonconstant bounded radial global minimizers of the previous equation.
    Mathematics Subject Classification: Primary: 35J60, 26D10; Secondary: 35B35, 35J20.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.doi: 10.1023/A:1010602715526.


    G. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.doi: 10.1090/S0894-0347-00-00345-3.


    E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), 243-268.doi: 10.1007/BF01404309.


    X. Cabré and A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of $R^n$, C. R. Math. Acad. Sci. Paris, 338 (2004), 769-774.doi: 10.1016/j.crma.2004.03.013.


    X. Cabré and J. Terra, Saddle-shaped solutions of bistable diffusion equation in all of $R^{2m}$, J. Eur. Math. Soc. (JEMS), 11 (2009), 819-843.doi: 10.4171/JEMS/168.


    L. Caffarelli, N. Garofalo and F. Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math., 47 (1994), 1457-1473.doi: 10.1002/cpa.3160471103.


    E. De Giorgi, Convergence problems for functionals and operators, in "Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978)," Pitagora, Bologna, (1979), 131-138.


    M. Del Pino, M. Kowalczyk and J. WeiOn De Giorgi conjecture in dimension $N\geq 9$, to appear in Ann. of Math., arXiv:0806.3141.


    N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.doi: 10.1007/s002080050196.


    D. Jerison and D. Monneau, Towards a counter-example to a conjecture of De Giorgi in high dimensions, Ann. Mat. Pura Appl., 183 (2004), 439-467.doi: 10.1007/s10231-002-0068-7.


    L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684.doi: 10.1002/cpa.3160380515.


    O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78.doi: 10.4007/annals.2009.169.41.


    S. Villegas, Asymptotic behavior of stable radial solutions of semilinear elliptic equations in $R^N$, J. Math. Pures Appl., 88 (2007), 241-250.doi: 10.1016/j.matpur.2007.06.004.

  • 加载中

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint