 Previous Article
 CPAA Home
 This Issue

Next Article
Nonexistence of nonconstant global minimizers with limit at $\infty$ of semilinear elliptic equations in all of $R^N$
A sixth order CahnHilliard type equation arising in oilwatersurfactant mixtures
1.  Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01447 Warsaw, Poland 
2.  Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00950 Warsaw, Poland 
References:
show all references
References:
[1] 
Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order CahnHilliard type equation via the Bäcklund transformation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 859880. doi: 10.3934/cpaa.2014.13.859 
[2] 
Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous CahnHilliard type equations. Discrete and Continuous Dynamical Systems  S, 2013, 6 (2) : 517546. doi: 10.3934/dcdss.2013.6.517 
[3] 
Aibo Liu, Changchun Liu. Cauchy problem for a sixth order CahnHilliard type equation with inertial term. Evolution Equations and Control Theory, 2015, 4 (3) : 315324. doi: 10.3934/eect.2015.4.315 
[4] 
Alain Miranville. Existence of solutions for CahnHilliard type equations. Conference Publications, 2003, 2003 (Special) : 630637. doi: 10.3934/proc.2003.2003.630 
[5] 
Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the CahnHilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801827. doi: 10.3934/dcds.2017033 
[6] 
Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic CahnHilliard and AllenCahn systems in higher space dimensions. Discrete and Continuous Dynamical Systems  S, 2016, 9 (3) : 759775. doi: 10.3934/dcdss.2016027 
[7] 
Nguyen Huy Tuan. Existence and limit problem for fractional fourth order subdiffusion equation and CahnHilliard equation. Discrete and Continuous Dynamical Systems  S, 2021, 14 (12) : 45514574. doi: 10.3934/dcdss.2021113 
[8] 
Georgia Karali, Yuko Nagase. On the existence of solution for a CahnHilliard/AllenCahn equation. Discrete and Continuous Dynamical Systems  S, 2014, 7 (1) : 127137. doi: 10.3934/dcdss.2014.7.127 
[9] 
Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Globalintime Gevrey regularity solutions for the functionalized CahnHilliard equation. Discrete and Continuous Dynamical Systems  S, 2020, 13 (8) : 22112229. doi: 10.3934/dcdss.2020186 
[10] 
Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic CahnHilliard equation on convex domains. Discrete and Continuous Dynamical Systems  B, 2011, 16 (1) : 3155. doi: 10.3934/dcdsb.2011.16.31 
[11] 
Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in CahnHilliard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 125166. doi: 10.3934/dcds.2012.32.125 
[12] 
Cristina Pocci. On singular limit of a nonlinear $p$order equation related to CahnHilliard and AllenCahn evolutions. Evolution Equations and Control Theory, 2013, 2 (3) : 517530. doi: 10.3934/eect.2013.2.517 
[13] 
Changchun Liu, Hui Tang. Existence of periodic solution for a CahnHilliard/AllenCahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219237. doi: 10.3934/eect.2017012 
[14] 
Pablo ÁlvarezCaudevilla. Existence and multiplicity of stationary solutions for a CahnHilliardtype equation in $\mathbb{R}^N$. Conference Publications, 2015, 2015 (special) : 1018. doi: 10.3934/proc.2015.0010 
[15] 
Desheng Li, Xuewei Ju. On dynamical behavior of viscous CahnHilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 22072221. doi: 10.3934/dcds.2012.32.2207 
[16] 
Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized CahnHilliard equation with biological applications. Discrete and Continuous Dynamical Systems  B, 2014, 19 (7) : 20132026. doi: 10.3934/dcdsb.2014.19.2013 
[17] 
Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa. A secondorder accurate structurepreserving scheme for the CahnHilliard equation with a dynamic boundary condition. Communications on Pure and Applied Analysis, 2022, 21 (2) : 355392. doi: 10.3934/cpaa.2021181 
[18] 
Sergey Zelik, Jon Pennant. Global wellposedness in uniformly local spaces for the CahnHilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461480. doi: 10.3934/cpaa.2013.12.461 
[19] 
Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. Stationary solutions to the onedimensional CahnHilliard equation: Proof by the complete elliptic integrals. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 609629. doi: 10.3934/dcds.2007.19.609 
[20] 
Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a CahnHilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 24232442. doi: 10.3934/dcds.2015.35.2423 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]