Citation: |
[1] |
R. Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves," Interscience Publishers, Inc., New York, N. Y., 1948. |
[2] |
M. Di Francesco, Initial value problem and relaxation limits of the Hamer model for radiating gases in several space variables, NoDEA Nonl. Differential Equations Appl., 13 (2007), 531-562.doi: doi:10.1007/s00030-006-4023-y. |
[3] |
M. Di Francesco, "Diffusive Behavior and Asymptotic Self similarity for Fluid Models," Ph. D thesis, University of Rome Tor Vergata, Rome, Italy, 2004. |
[4] |
M. Di Francesco and C. Lattanzio, Optimal $L^1$ rate of decay to diffusion waves for the Hamer model of radiating gases, Appl. Math. Lett., 19 (2006), 1046-1052.doi: doi:10.1016/j.aml.2004.11.008. |
[5] |
R. Duan, K. Fellner and C. Zhu, Energy method for multi-dimensional balance laws with non-local dissipation, to appear in J. Math. Pur. Appl. (http://homepage.univie.ac.at/klemens.fellner/preprints/DZFfinal.pdf). |
[6] |
W. L. Gao, L. Z. Ruan and C. J. Zhu, Decay rates to the planar rarefaction waves for a model system of the radiating gas in $n$-dimensions, J. Differential Equations, 244 (2008), 2614-2640.doi: doi:10.1016/j.jde.2008.02.023. |
[7] |
W. L. Gao and C. J. Zhu, Asymptotic decay toward the planar rarefaction waves for a model system of the radiating gas in two dimensions, Math. Models Methods Appl. Sci., 18 (2008), 511-541.doi: doi:10.1142/S0218202508002760. |
[8] |
K. Hamer, Nonlinear effects on the propogation of sound waves in a radiating gas, Quart. J. Mech. Appl. Math., 24 (1971), 155-168.doi: doi:10.1093/qjmam/24.2.155. |
[9] |
T. Iguchi and S. Kawashima, On space-time decay properties of solutions to hyperbolic-elliptic coupled systems, Hiroshima Math. J., 32 (2002), 229-308. |
[10] |
S. Kawashima, Y. Nikkuni and S. Nishibata, The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics, in "Analysis of Systems of Conservation Laws" (H. Freistüehler ed.), Chapman & Hall/CRC, 1998, 87-127. |
[11] |
S. Kawashima, Y. Nikkuni and S. Nishibata, Large-time behavior of solutions to hyperbolic-elliptic coupled systems, Arch. Rational Mech. Anal., 170 (2003), 297-329.doi: doi:10.1007/s00205-003-0273-6. |
[12] |
S. Kawashima and S. Nishibata, Shock waves for a model system of the radiating gas, SIAM J. Math. Anal., 30 (1999), 95-117.doi: doi:10.1137/S0036141097322169. |
[13] |
S. Kawashima and S. Nishibata, Weak solutions with a shock to a model system of the radiating gas, Sci. Bull. Josai. Univ., Special Issue, 5 (1998), 119-130. |
[14] |
S. Kawashima and S. Nishibata, Cauchy problem for a model system of the radiating gas: weak solution with a jump and classical solutions, Math. Models Methods Appl. Sci., 9 (1999), 69-91.doi: doi:10.1142/S0218202599000063. |
[15] |
S. Kawashima and S. Nishibata, A singular limit for hyperbolic-elliptic coupled systems in radiation hydrodynamics, Indiana Univ. Math. J., 50 (2001), 567-589.doi: doi:10.1512/iumj.2001.50.1797. |
[16] |
S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system of a radiating gas, Kyushu J. Math., 58 (2004), 211-250.doi: doi:10.2206/kyushujm.58.211. |
[17] |
C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for radiating gas, J. Differential Equations, 190 (2003), 439-465.doi: doi:10.1016/S0022-0396(02)00158-4. |
[18] |
C. Lattanzio, C. Mascia, T. Nguyen, R.G. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles, SIAM J. Math. Anal., 41 (2009/10), 2165-2206. doi: doi:10.1137/09076026X. |
[19] |
C. Lattanzio, C. Mascia and D. Serre, Shock waves for radiative hyperbolic-elliptic systems, Indiana Univ. Math. J., 56 (2007), 2601-2640.doi: doi:10.1512/iumj.2007.56.3043. |
[20] |
C. Lattanzio, C. Mascia and D. Serre, in "Hyperbolic Problems: Theory, Numerics, Applications" (Lyon, July 1721, 2006), S. Benzoni-Gavage and D. Serre, eds., Springer-Verlag, Boston, Berlin, Heidelberg, 2008, 661-669. |
[21] |
P. Laurencot, Asymptotic self-similarity for a simplified model for radiating gases, Asymptot. Anal., 42 (2005), 251-262. |
[22] |
C. Lin, J.-F. Coulombel and T. Goudon, Shock profiles for non-equilibrium radiating gases, Phys. D, 218 (2006), 83-94.doi: doi:10.1016/j.physd.2006.04.012. |
[23] |
C. Lin, J.-F. Coulombel and T. Goudon, Asymptotic stability of shock profiles in radiative hydrodynamics, C. R. Math. Acad. Sci. Paris, 345 (2007), 625-628. |
[24] |
Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation, preprint, arXiv:1003.2885. |
[25] |
H. Liu and E. Tadmor, Critical thresholds in a convolution model for nonlinear conservation laws, SIAM J. Math. Anal., 33 (2001), 930-945 (electronic). |
[26] |
T. Nguyen, R. G. Plaza and K. Zumbrun, Stability of radiative shock profiles for hyperbolic-elliptic coupled systems, Phys. D, 239 (2010), 428-453.doi: doi:10.1016/j.physd.2010.01.011. |
[27] |
S. Nishibata, Asymptotic behavior of solutions to a model system of a radiating gas with discontinuous initial data, Math. Models Methods Appl. Sci., 10 (2000), 1209-1231.doi: doi:10.1142/S0218202500000598. |
[28] |
M. Nishikawa and S. Nishibata, Convergence rates toward the travelling waves for a model system of the radiating gas, Math. Meth. Appl. Sci., 30 (2007), 649-663.doi: doi:10.1002/mma.800. |
[29] |
L. Z. Ruan and C. J. Zhu, Asymptotic behavior of solutions to a hyperbolic-elliptic coupled system in multi-dimensional radiating gas, preprint. |
[30] |
S. Schochet and E. Tadmor, The regularized Chapman-Enskog expansion for scalar conservation laws, Arch. Rational Mech. Anal., 119 (1992), 95-107.doi: doi:10.1007/BF00375117. |
[31] |
D. Serre, $L^1$-stability of constants in a model for radiating gases, Comm. Math. Sci., 1 (2003), 197-205. |
[32] |
D. Serre, $L^1$-stability of nonlinear waves in scalar conservation laws, in "Evolutionary Equations," |
[33] |
W. G. Vincenti and C. H. Kruger, "Introduction to Physical Gas Dynamics," Wiley, New York, 1965. |
[34] |
W. Wang and W. Wang, The pointwise estimates of solutions for a model system of the radiating gas in multi-dimensions, Nonlinear Analysis, 71 (2009), 1180-1195.doi: doi:10.1016/j.na.2008.11.050. |