\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regularity criteria for a magnetohydrodynamic-$\alpha$ model

Abstract Related Papers Cited by
  • We study the $n$-dimensional magnetohydrodynamic-$\alpha$ (MHD-$\alpha$) model in the whole space. Various regularity criteria are established. When $n=4$, uniqueness of weak solutions is also proved. As a corollary, the strong solution to this model exists globally, as $n \leq 4$.
    Mathematics Subject Classification: Primary: 35B40, 76D03.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous Magneto-Hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930.doi: doi:10.1007/s00220-008-0545-y.

    [2]

    Q. Chen, C. Miao and Z. Zhang, On the uniqueness of weak solutions for the 3D Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2165-2180.doi: doi:10.1016/j.anihpc.2009.01.008.

    [3]

    S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341.doi: doi:10.1103/PhysRevLett.81.5338.

    [4]

    S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence. Predictability: quantifying uncertainty in models of complex phenomena, Phys. D, 133 (1999), 49-65.doi: doi:10.1016/S0167-2789(99)00098-6.

    [5]

    A. Cheskidov, D. D. Holm, E. Olson and E. S. Titi, On a Leray-$\alpha$ model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 629-649.

    [6]

    R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286.

    [7]

    C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory., J. Dynam. Differential Equations, 14 (2002), 1-35.doi: doi:10.1023/A:1012984210582.

    [8]

    C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.doi: doi:10.1016/j.jde.2004.07.002.

    [9]

    D. D. Holm, Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics, Chaos, 12 (2002), 518-530.doi: doi:10.1063/1.1460941.

    [10]

    D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories., Adv. Math., 137 (1998), 1-81.doi: doi:10.1006/aima.1998.1721.

    [11]

    A. A. Ilyin, E. M. Lunasin and E. S. Titi, A Modified-Leray-$\alpha$ subgrid scale model of turbulence, Nonlinearity, 19 (2006), 879-897.doi: doi:10.1088/0951-7715/19/4/006.

    [12]

    B. B. Kadomtsev, "Tokamak Plasma: a Complex Physical System," Bristol: Institute of Physics, 1992.

    [13]

    T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.doi: doi:10.1002/cpa.3160410704.

    [14]

    J. S. Linshiz and E. S. Titi, Analytical study of certain magnetohydrodynamic -$\alpha$ models, J. Math. Phys., 48 (2007), 065504 (28 pp).

    [15]

    S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc., 131 (2003), 1553-1556.doi: doi:10.1090/S0002-9939-02-06715-1.

    [16]

    J. E. Marsden and S. Shkoller, Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations on bounded domains, Topological methods in the physical sciences (London, 2000). R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (2001), 1449-1468.

    [17]

    Y. Meyer, Oscillating patterns in some nonlinear evolution equations, pp. 101-187, Mathematical Foundation of Turbulent Viscous Flows, Lecture Notes in Math., (1871), Editors: M.Cannone, T.Miyakawa, Springer-Verlag, (2006).

    [18]

    M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.doi: doi:10.1002/cpa.3160360506.

    [19]

    J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306.doi: doi:10.1080/03605300701382530.

    [20]

    Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886.doi: doi:10.3934/dcds.2005.12.881.

    [21]

    Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure, Internat. J. Non-Linear Mech., 41 (2006), 1174-1180.doi: doi:10.1016/j.ijnonlinmec.2006.12.001.

    [22]

    Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505.doi: doi:10.1016/j.anihpc.2006.03.014.

    [23]

    Y. Zhou and J. Fan, Regularity criteria for the viscous Camassa-Holm equations, Int. Math. Res. Not. IMRN, (2009), 2508-2518.

    [24]

    Y. Zhou and J. Fan, On regularity criteria in terms of pressure for the 3D viscous MHD equations, Preprint (2008).

    [25]

    Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space, Z. Angew. Math. Phys., 61 (2010), 193-199.doi: doi:10.1007/s00033-009-0023-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return