Advanced Search
Article Contents
Article Contents

Regularity criteria for a magnetohydrodynamic-$\alpha$ model

Abstract Related Papers Cited by
  • We study the $n$-dimensional magnetohydrodynamic-$\alpha$ (MHD-$\alpha$) model in the whole space. Various regularity criteria are established. When $n=4$, uniqueness of weak solutions is also proved. As a corollary, the strong solution to this model exists globally, as $n \leq 4$.
    Mathematics Subject Classification: Primary: 35B40, 76D03.


    \begin{equation} \\ \end{equation}
  • [1]

    Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous Magneto-Hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930.doi: doi:10.1007/s00220-008-0545-y.


    Q. Chen, C. Miao and Z. Zhang, On the uniqueness of weak solutions for the 3D Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2165-2180.doi: doi:10.1016/j.anihpc.2009.01.008.


    S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341.doi: doi:10.1103/PhysRevLett.81.5338.


    S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence. Predictability: quantifying uncertainty in models of complex phenomena, Phys. D, 133 (1999), 49-65.doi: doi:10.1016/S0167-2789(99)00098-6.


    A. Cheskidov, D. D. Holm, E. Olson and E. S. Titi, On a Leray-$\alpha$ model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 629-649.


    R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286.


    C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory., J. Dynam. Differential Equations, 14 (2002), 1-35.doi: doi:10.1023/A:1012984210582.


    C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.doi: doi:10.1016/j.jde.2004.07.002.


    D. D. Holm, Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics, Chaos, 12 (2002), 518-530.doi: doi:10.1063/1.1460941.


    D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories., Adv. Math., 137 (1998), 1-81.doi: doi:10.1006/aima.1998.1721.


    A. A. Ilyin, E. M. Lunasin and E. S. Titi, A Modified-Leray-$\alpha$ subgrid scale model of turbulence, Nonlinearity, 19 (2006), 879-897.doi: doi:10.1088/0951-7715/19/4/006.


    B. B. Kadomtsev, "Tokamak Plasma: a Complex Physical System," Bristol: Institute of Physics, 1992.


    T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.doi: doi:10.1002/cpa.3160410704.


    J. S. Linshiz and E. S. Titi, Analytical study of certain magnetohydrodynamic -$\alpha$ models, J. Math. Phys., 48 (2007), 065504 (28 pp).


    S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc., 131 (2003), 1553-1556.doi: doi:10.1090/S0002-9939-02-06715-1.


    J. E. Marsden and S. Shkoller, Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations on bounded domains, Topological methods in the physical sciences (London, 2000). R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (2001), 1449-1468.


    Y. Meyer, Oscillating patterns in some nonlinear evolution equations, pp. 101-187, Mathematical Foundation of Turbulent Viscous Flows, Lecture Notes in Math., (1871), Editors: M.Cannone, T.Miyakawa, Springer-Verlag, (2006).


    M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.doi: doi:10.1002/cpa.3160360506.


    J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306.doi: doi:10.1080/03605300701382530.


    Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886.doi: doi:10.3934/dcds.2005.12.881.


    Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure, Internat. J. Non-Linear Mech., 41 (2006), 1174-1180.doi: doi:10.1016/j.ijnonlinmec.2006.12.001.


    Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505.doi: doi:10.1016/j.anihpc.2006.03.014.


    Y. Zhou and J. Fan, Regularity criteria for the viscous Camassa-Holm equations, Int. Math. Res. Not. IMRN, (2009), 2508-2518.


    Y. Zhou and J. Fan, On regularity criteria in terms of pressure for the 3D viscous MHD equations, Preprint (2008).


    Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space, Z. Angew. Math. Phys., 61 (2010), 193-199.doi: doi:10.1007/s00033-009-0023-1.

  • 加载中

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint