\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Free boundary problem for compressible flows with density--dependent viscosity coefficients

Abstract Related Papers Cited by
  • In this paper, we consider the free boundary problem of the spherically symmetric compressible isentropic Navier--Stokes equations in $R^n (n \geq 1)$, with density--dependent viscosity coefficients. Precisely, the viscosity coefficients $\mu$ and $\lambda$ are assumed to be proportional to $\rho^\theta$, $0 < \theta < 1$, where $\rho$ is the density. We obtain the global existence, uniqueness and continuous dependence on initial data of a weak solution, with a Lebesgue initial velocity $u_0\in L^{4 m}$, $4m>n$ and $\theta<\frac{4m-2}{4m+n}$. We weaken the regularity requirement of the initial velocity, and improve some known results of the one-dimensional system.
    Mathematics Subject Classification: Primary: 76D05, 35R35; Secondary: 35Q35, 76N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.doi: doi:10.1081/PDE-120020499.

    [2]

    D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.

    [3]

    G. Q. Chen and M. Kratka, Global solutions to the Navier-Stokes equations for compressible heat-conducting flow with symmetry and free boundary, Comm. Partial Differential Equations, 27 (2002), 907-943.doi: doi:10.1081/PDE-120020499.

    [4]

    G. Q. Chen, Vacuum states and global stability of rarefaction waves for compressible flow, Methods Appl. Anal., 7 (2000), 337-361.

    [5]

    P. Chen and T. Zhang, A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients, Commun. Pure Appl. Anal., 7 (2008), 987-1016.doi: doi:10.3934/cpaa.2008.7.987.

    [6]

    D. Y. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension, Commun. Pure Appl. Anal., 3 (2004), 675-694.doi: doi:10.3934/cpaa.2004.3.675.

    [7]

    D. Y. Fang and T. Zhang, A note on compressible Navier-Stokes equations with vacuum state in one dimension, Nonlinear Anal., 58 (2004), 719-731.doi: doi:10.1016/j.na.2004.05.016.

    [8]

    D. Y. Fang and T. Zhang, Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data, J. Differential Equations, 222 (2006), 63-94.doi: doi:10.1016/j.jde.2005.07.011.

    [9]

    Z. H. Guo, Q. S. Jiu and Z. P. Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, SIAM J. Math. Anal., 39 (2008), 1402-1427.doi: doi:10.1137/070680333.

    [10]

    D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887-898.doi: doi:10.1137/0151043.

    [11]

    D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow, Arch. Rational Mech. Anal., 114 (1991), 15-46.doi: doi:10.1007/BF00375683.

    [12]

    D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data, J. Differential Equations, 95 (1992), 33-74.doi: doi:10.1016/0022-0396(92)90042-L.

    [13]

    D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indiana Univ. Math. J., 41 (1992), 1225-1302.doi: doi:10.1512/iumj.1992.41.41060.

    [14]

    S. Jiang, Z. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods Appl. Anal., 12 (2005), 239-251.

    [15]

    S. Jiang and A. A. Zlotnik, Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 939-960.doi: doi:10.1017/S0308210500003565.

    [16]

    P.-L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. 1-2. Oxford University Press: New York, 1996, 1998.

    [17]

    T. P. Liu, Z. P. Xin and T. Yang, Vacuum states for compressible flow, Discrete Contin. Dynam. Systems, 4 (1998), 1-32.

    [18]

    A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equation, Comm. Partial Differential Equations, 32 (2007), 431-452.doi: doi:10.1080/03605300600857079.

    [19]

    X. L. Qin, Z. A. Yao and H. X. Zhao, One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries, Comm. Pure Appl. Anal., 7 (2008), 373-381.

    [20]

    S. W. Vong, T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum(II), J. Differential Equations, 192 (2003), 475-501.doi: doi:10.1016/S0022-0396(03)00060-3.

    [21]

    V. A. Vaigant and A. V. Kazhikhov, On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscosity fluid, Siberian Math. J., 2 (1995), 1108-1141.doi: doi:10.1007/BF02106835.

    [22]

    Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.doi: doi:10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

    [23]

    T. Yang, Z. A. Yao and C. J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations, 26 (2001), 965-981.doi: doi:10.1081/PDE-100002385.

    [24]

    T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Comm. Math. Phys., 230 (2002), 329-363.doi: doi:10.1007/s00220-002-0703-6.

    [25]

    T. Zhang and D. Y. Fang, Global behavior of spherically symmetric Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 236 (2007), 293-341.doi: doi:10.1016/j.jde.2007.01.025.

    [26]

    T. Zhang and D. Y. Fang, Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients, Arch. Ration. Mech. Anal., 191 (2009), 195-243.doi: doi:10.1007/s00205-008-0183-8.

    [27]

    T. Zhang and D. Y. Fang, A note on spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, Nonlinear Analysis: Real World Applications, 10 (2009), 2272-2285.doi: doi:10.1016/j.nonrwa.2008.04.014.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return