-
Previous Article
The optimal weighted $W^{2, p}$ estimates of elliptic equation with non-compatible conditions
- CPAA Home
- This Issue
-
Next Article
Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent
A singular limit in a nonlinear problem arising in electromagnetism
1. | Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften, Institut für Mathematik, Strasse des 17. Juni 136, 10623 Berlin |
References:
[1] |
J. M. Ball, Strongly continuous semi groups, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977), 370-373. |
[2] |
J. W. Barrett and L. Prigozhin, Bean's critical-state model as the $p\rightarrow\infty$ limit of an evolutionary $p$-Laplace equation, Nonlinear Anal., 42 (2000), 977-993.
doi: doi:10.1016/S0362-546X(99)00147-9. |
[3] |
C. P. Bean, Magnetization of high-field superconductors, Rev. Mod. Phys., 36 (1964), 31-39.
doi: doi:10.1103/RevModPhys.36.31. |
[4] |
F. Jochmann, Existence of weak solutions to the drift-diffusion model for semiconductors coupled with Maxwell's equations, J. Math. Anal. Appl., 204 (1996), 655-676.
doi: doi:10.1006/jmaa.1996.0460. |
[5] |
F. Jochmann, A semi-static limit for Maxwell's equations in an exterior domain, Comm. Part. Diff. Equations, 23 (1998), 2035-2076.
doi: doi:10.1080/03605309808821410. |
[6] |
F. Jochmann, Regularity of weak solutions to Maxwell's Equations with mixed boundary conditions, Math. Meth. Appl. Sci., 22 (1999), 1255-1274.
doi: doi:10.1002/(SICI)1099-1476(19990925)22:14<1255::AID-MMA83>3.0.CO;2-N. |
[7] |
F. Jochmann, Energy decay of solutions to Maxwells equations with conductivity and polarization, J. Diff. Equations, 203 (2004), 232-254.
doi: doi:10.1016/j.jde.2004.05.005. |
[8] |
F. Jochmann, On a first-order hyperbolic systems including Bean's model for superconductors with displacement current, J. Diff. Equations, 246 (2009), 2151-2191.
doi: doi:10.1016/j.jde.2008.12.023. |
[9] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," 2nd edition, |
[10] |
R. Picard, An elementary proof for a compact embedding result in generalized electromagnetic theory, Math. Z., 187 (1984), 151-161.
doi: doi:10.1007/BF01161700. |
[11] |
C. Weber, A local compactness theorem for Maxwell's equations, Math. Methods Appl. Sci., 2 (1980), 12-25.
doi: doi:10.1002/mma.1670020103. |
[12] |
H. M. Yin, On a $p$-Laplacian type of evolution system and applications to Bean's model in the type-II superconductivity theory, Quarterly. Appl. Math., 59 (2001), 47-66. |
[13] |
H. M. Yin, On a singular limit problem for nonlinear Maxwell equations, J. Diff. Equations, 156 (1999), 355-375.
doi: doi:10.1006/jdeq.1998.3608. |
[14] |
H. M. Yin, B. Q. Li and J. Zou, A degenerate evolution system modeling Bean's critical-state type-II superconductors, Discrete Continuous Dynam. Systems - B, 8 (2002), 781-794. |
show all references
References:
[1] |
J. M. Ball, Strongly continuous semi groups, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977), 370-373. |
[2] |
J. W. Barrett and L. Prigozhin, Bean's critical-state model as the $p\rightarrow\infty$ limit of an evolutionary $p$-Laplace equation, Nonlinear Anal., 42 (2000), 977-993.
doi: doi:10.1016/S0362-546X(99)00147-9. |
[3] |
C. P. Bean, Magnetization of high-field superconductors, Rev. Mod. Phys., 36 (1964), 31-39.
doi: doi:10.1103/RevModPhys.36.31. |
[4] |
F. Jochmann, Existence of weak solutions to the drift-diffusion model for semiconductors coupled with Maxwell's equations, J. Math. Anal. Appl., 204 (1996), 655-676.
doi: doi:10.1006/jmaa.1996.0460. |
[5] |
F. Jochmann, A semi-static limit for Maxwell's equations in an exterior domain, Comm. Part. Diff. Equations, 23 (1998), 2035-2076.
doi: doi:10.1080/03605309808821410. |
[6] |
F. Jochmann, Regularity of weak solutions to Maxwell's Equations with mixed boundary conditions, Math. Meth. Appl. Sci., 22 (1999), 1255-1274.
doi: doi:10.1002/(SICI)1099-1476(19990925)22:14<1255::AID-MMA83>3.0.CO;2-N. |
[7] |
F. Jochmann, Energy decay of solutions to Maxwells equations with conductivity and polarization, J. Diff. Equations, 203 (2004), 232-254.
doi: doi:10.1016/j.jde.2004.05.005. |
[8] |
F. Jochmann, On a first-order hyperbolic systems including Bean's model for superconductors with displacement current, J. Diff. Equations, 246 (2009), 2151-2191.
doi: doi:10.1016/j.jde.2008.12.023. |
[9] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," 2nd edition, |
[10] |
R. Picard, An elementary proof for a compact embedding result in generalized electromagnetic theory, Math. Z., 187 (1984), 151-161.
doi: doi:10.1007/BF01161700. |
[11] |
C. Weber, A local compactness theorem for Maxwell's equations, Math. Methods Appl. Sci., 2 (1980), 12-25.
doi: doi:10.1002/mma.1670020103. |
[12] |
H. M. Yin, On a $p$-Laplacian type of evolution system and applications to Bean's model in the type-II superconductivity theory, Quarterly. Appl. Math., 59 (2001), 47-66. |
[13] |
H. M. Yin, On a singular limit problem for nonlinear Maxwell equations, J. Diff. Equations, 156 (1999), 355-375.
doi: doi:10.1006/jdeq.1998.3608. |
[14] |
H. M. Yin, B. Q. Li and J. Zou, A degenerate evolution system modeling Bean's critical-state type-II superconductors, Discrete Continuous Dynam. Systems - B, 8 (2002), 781-794. |
[1] |
Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407 |
[2] |
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431 |
[3] |
Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754-762. doi: 10.3934/proc.2011.2011.754 |
[4] |
Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175 |
[5] |
Alina Chertock, Changhui Tan, Bokai Yan. An asymptotic preserving scheme for kinetic models with singular limit. Kinetic and Related Models, 2018, 11 (4) : 735-756. doi: 10.3934/krm.2018030 |
[6] |
Abdessatar Khelifi, Siwar Saidani. Asymptotic behavior of eigenvalues of the Maxwell system in the presence of small changes in the interface of an inclusion. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022080 |
[7] |
Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257 |
[8] |
Annalena Albicker, Roland Griesmaier. Monotonicity in inverse scattering for Maxwell's equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022032 |
[9] |
Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure and Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179 |
[10] |
Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027 |
[11] |
Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305 |
[12] |
Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure and Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503 |
[13] |
Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic and Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032 |
[14] |
Monica Conti, Vittorino Pata, M. Squassina. Singular limit of dissipative hyperbolic equations with memory. Conference Publications, 2005, 2005 (Special) : 200-208. doi: 10.3934/proc.2005.2005.200 |
[15] |
José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873 |
[16] |
Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181 |
[17] |
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473 |
[18] |
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117 |
[19] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[20] |
Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]