March  2011, 10(2): 583-592. doi: 10.3934/cpaa.2011.10.583

On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

2. 

College of Mathematics and Computer Science, Chongqing Three Gorges University, Wanzhou 404000, Chongqing, China

3. 

Department of Mathematics, University of Mostaganem, Box 227, Mostaganem 27000, Algeria

Received  May 2010 Revised  September 2010 Published  December 2010

In this paper, some improved regularity criteria for the 3D magneto-micropolar fluid equations are established in critical Morrey-Campanato spaces. It is proved that if the velocity field satisfies

$u\in L^{\frac{2}{1-r}}(0,T; M_{2,\frac{3}{r}}(R^3)) $ with $r\in (0, 1)$ or $u\in C(0, T; M_{2,3}(R^3))$

or the gradient field of velocity satisfies

$ \nabla u\in L^{\frac{2}{2-r}}(0, T; M_{2,\frac{3}{ r}}(R^3))$ with $r\in (0,1], $

then the solution remains smooth on $[0,T] $.

Citation: Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure and Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583
References:
[1]

R. E. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys., 184 (1997), 443-455. doi: doi:10.1007/s002200050067.

[2]

Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations, Comm. Math. Phys., 275 (2007), 861-872. doi: doi:10.1007/s00220-007-0319-y.

[3]

G. Duvaut and J. L. Lions, Inéquations en thermoé lasticité et magnéto-hydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241-279.

[4]

S. Gala, A note on the uniqueness of mild solutions to the Navier-Stokes equations, Arch. Math.(Basel), 84 (2007), 448-454.

[5]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluids equations, Internat. J. Engrg. Sci., 15 (1977), 105-108. doi: doi:10.1016/0020-7225(77)90025-8.

[6]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254. doi: doi:10.1016/j.jde.2004.07.002.

[7]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in Morrey spaces, Bol. Soc. Bras. Mat.(N.S.), 22 (1992), 127-155.

[8]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Research Notes in Mathematics, Chapman & Hall, CRC, 2002.

[9]

P. G. Lemarié-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space, Rev. Mat. Iberoam., 23 (2007), 897-930.

[10]

G. Lukaszewicz, "Micropolar Fluids: Theory and Applications," Birkhauser, Berlin 1998.

[11]

S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc., 131 (2003), 1553-1556. doi: doi:10.1090/S0002-9939-02-06715-1.

[12]

E. Ortega-Torres and M. A. Rojas-Medar, On the uniqueness and regularity of the weak solutions for magneto-micropolar equations, Rev. Mat. Apl., 17 (1996), 75-90.

[13]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319. doi: doi:10.1002/mana.19971880116.

[14]

M. A. Rojas-Medar and J. L. Boldrini, Magneto-micropolar fluid motion: existence of weak solutions, Rev. Mat. Complut., 11 (1998), 443-460.

[15]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664. doi: doi:10.1002/cpa.3160360506.

[16]

M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407-1456. doi: doi:10.1080/03605309208820892.

[17]

J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306. doi: doi:10.1080/03605300701382530.

[18]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Mathematica Scientia, 30 (2010), 1469-1480. doi: doi:10.1016/S0252-9602(10)60139-7.

[19]

Y. Zhou, Remarks on regularities for the 3D MHD equations, Disc. Cont. Dyna. Sys., 12 (2005), 881-886. doi: doi:10.3934/dcds.2005.12.881.

[20]

Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure, Internat. J. Non-Linear Mech., 41 (2006), 1174-1180. doi: doi:10.1016/j.ijnonlinmec.2006.12.001.

[21]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505.

[22]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations, To appear in Forum Math (2010), DOI 10.1515/FORM.2011.079.

[23]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space, Z. Angew. Math. Phys., 61 (2010), 193-199. doi: doi:10.1007/s00033-009-0023-1.

[24]

Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field. Nonlinear Anal, Nonlinear Anal., 72 (2010), 3643-3648. doi: doi:10.1016/j.na.2009.12.045.

show all references

References:
[1]

R. E. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys., 184 (1997), 443-455. doi: doi:10.1007/s002200050067.

[2]

Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations, Comm. Math. Phys., 275 (2007), 861-872. doi: doi:10.1007/s00220-007-0319-y.

[3]

G. Duvaut and J. L. Lions, Inéquations en thermoé lasticité et magnéto-hydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241-279.

[4]

S. Gala, A note on the uniqueness of mild solutions to the Navier-Stokes equations, Arch. Math.(Basel), 84 (2007), 448-454.

[5]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluids equations, Internat. J. Engrg. Sci., 15 (1977), 105-108. doi: doi:10.1016/0020-7225(77)90025-8.

[6]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254. doi: doi:10.1016/j.jde.2004.07.002.

[7]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in Morrey spaces, Bol. Soc. Bras. Mat.(N.S.), 22 (1992), 127-155.

[8]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Research Notes in Mathematics, Chapman & Hall, CRC, 2002.

[9]

P. G. Lemarié-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space, Rev. Mat. Iberoam., 23 (2007), 897-930.

[10]

G. Lukaszewicz, "Micropolar Fluids: Theory and Applications," Birkhauser, Berlin 1998.

[11]

S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc., 131 (2003), 1553-1556. doi: doi:10.1090/S0002-9939-02-06715-1.

[12]

E. Ortega-Torres and M. A. Rojas-Medar, On the uniqueness and regularity of the weak solutions for magneto-micropolar equations, Rev. Mat. Apl., 17 (1996), 75-90.

[13]

M. A. Rojas-Medar, Magneto-micropolar fluid motion: existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301-319. doi: doi:10.1002/mana.19971880116.

[14]

M. A. Rojas-Medar and J. L. Boldrini, Magneto-micropolar fluid motion: existence of weak solutions, Rev. Mat. Complut., 11 (1998), 443-460.

[15]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664. doi: doi:10.1002/cpa.3160360506.

[16]

M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations, 17 (1992), 1407-1456. doi: doi:10.1080/03605309208820892.

[17]

J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306. doi: doi:10.1080/03605300701382530.

[18]

B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Mathematica Scientia, 30 (2010), 1469-1480. doi: doi:10.1016/S0252-9602(10)60139-7.

[19]

Y. Zhou, Remarks on regularities for the 3D MHD equations, Disc. Cont. Dyna. Sys., 12 (2005), 881-886. doi: doi:10.3934/dcds.2005.12.881.

[20]

Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure, Internat. J. Non-Linear Mech., 41 (2006), 1174-1180. doi: doi:10.1016/j.ijnonlinmec.2006.12.001.

[21]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505.

[22]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations, To appear in Forum Math (2010), DOI 10.1515/FORM.2011.079.

[23]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space, Z. Angew. Math. Phys., 61 (2010), 193-199. doi: doi:10.1007/s00033-009-0023-1.

[24]

Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field. Nonlinear Anal, Nonlinear Anal., 72 (2010), 3643-3648. doi: doi:10.1016/j.na.2009.12.045.

[1]

V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901

[2]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[3]

Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315

[4]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[5]

V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263

[6]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[7]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[8]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[9]

Luis Barreira. Dimension theory of flows: A survey. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[10]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[11]

Valentin Afraimovich, Jean-Rene Chazottes and Benoit Saussol. Local dimensions for Poincare recurrences. Electronic Research Announcements, 2000, 6: 64-74.

[12]

Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022050

[13]

Zied Douzi, Bilel Selmi. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28 (1) : 423-432. doi: 10.3934/era.2020024

[14]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[15]

Jean-Pierre Francoise, Claude Piquet. Global recurrences of multi-time scaled systems. Conference Publications, 2011, 2011 (Special) : 430-436. doi: 10.3934/proc.2011.2011.430

[16]

Balázs Bárány, Michaƚ Rams, Ruxi Shi. On the multifractal spectrum of weighted Birkhoff averages. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2461-2497. doi: 10.3934/dcds.2021199

[17]

Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure and Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425

[18]

Lars Olsen. First return times: multifractal spectra and divergence points. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635

[19]

Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129

[20]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]