-
Previous Article
Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks
- CPAA Home
- This Issue
-
Next Article
Uniform attractor for non-autonomous nonlinear Schrödinger equation
Global wellposedness for a transport equation with super-critial dissipation
1. | School of Mathematical Sciences, Fudan University, Shanghai 200433, China |
References:
[1] |
A. Kiselev, F. nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Mathe., 167 (2007), 445-453.
doi: doi:10.1007/s00222-006-0020-3. |
[2] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, preprint, ().
|
[3] |
P. Constantin, P. D. Lax and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation, Comm. Pure Appl. Math., 38 (1985), 715-724.
doi: doi:10.1002/cpa.3160380605. |
[4] |
P. Constantin, A. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.
doi: doi:10.1088/0951-7715/7/6/001. |
[5] |
D. Córdoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. of Math., 148 (1998), 1135-1152.
doi: doi:10.2307/121037. |
[6] |
K. Y. Wang, Global well-posedness for a transport equation with non-local velocity and critical diffusion, Commun. Pure Appl. Anal., 7 (2008), 1203-1210.
doi: doi:10.3934/cpaa.2008.7.1203. |
[7] |
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. |
[8] |
H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation, Nonlinearity, 21 (2008), 2447-2461.
doi: doi:10.1088/0951-7715/21/10/013. |
[9] |
X. W. Yu, Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation, J. Math. Anal. Appl., 339 (2008), 359-371.
doi: doi:10.1016/j.jmaa.2007.06.064. |
[10] |
G. R. Baker, X. Li and A. C. Morlet, Analytic structure of two 1D-transport equations with nonlocal fluxes, Physica D: Nonlinear Phenomena, 91 (1996), 349-375.
doi: doi:10.1016/0167-2789(95)00271-5. |
[11] |
A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation, J. Math. Pures Appl., 86 (2006), 529-540.
doi: doi:10.1016/j.matpur.2006.08.002. |
[12] |
A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math., 162 (2005), 1377-1389.
doi: doi:10.4007/annals.2005.162.1377. |
show all references
References:
[1] |
A. Kiselev, F. nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Mathe., 167 (2007), 445-453.
doi: doi:10.1007/s00222-006-0020-3. |
[2] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, preprint, ().
|
[3] |
P. Constantin, P. D. Lax and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation, Comm. Pure Appl. Math., 38 (1985), 715-724.
doi: doi:10.1002/cpa.3160380605. |
[4] |
P. Constantin, A. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.
doi: doi:10.1088/0951-7715/7/6/001. |
[5] |
D. Córdoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. of Math., 148 (1998), 1135-1152.
doi: doi:10.2307/121037. |
[6] |
K. Y. Wang, Global well-posedness for a transport equation with non-local velocity and critical diffusion, Commun. Pure Appl. Anal., 7 (2008), 1203-1210.
doi: doi:10.3934/cpaa.2008.7.1203. |
[7] |
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. |
[8] |
H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation, Nonlinearity, 21 (2008), 2447-2461.
doi: doi:10.1088/0951-7715/21/10/013. |
[9] |
X. W. Yu, Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation, J. Math. Anal. Appl., 339 (2008), 359-371.
doi: doi:10.1016/j.jmaa.2007.06.064. |
[10] |
G. R. Baker, X. Li and A. C. Morlet, Analytic structure of two 1D-transport equations with nonlocal fluxes, Physica D: Nonlinear Phenomena, 91 (1996), 349-375.
doi: doi:10.1016/0167-2789(95)00271-5. |
[11] |
A. Córdoba, D. Córdoba and M. A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation, J. Math. Pures Appl., 86 (2006), 529-540.
doi: doi:10.1016/j.matpur.2006.08.002. |
[12] |
A. Córdoba, D. Córdoba and M. A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math., 162 (2005), 1377-1389.
doi: doi:10.4007/annals.2005.162.1377. |
[1] |
Tomasz Dlotko, Tongtong Liang, Yejuan Wang. Critical and super-critical abstract parabolic equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1517-1541. doi: 10.3934/dcdsb.2019238 |
[2] |
Boqing Dong, Wenjuan Wang, Jiahong Wu, Hui Zhang. Global regularity results for the climate model with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 211-229. doi: 10.3934/dcdsb.2018102 |
[3] |
A. M. Micheletti, Monica Musso, A. Pistoia. Super-position of spikes for a slightly super-critical elliptic equation in $R^N$. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 747-760. doi: 10.3934/dcds.2005.12.747 |
[4] |
Bo-Qing Dong, Jiahong Wu, Xiaojing Xu, Zhuan Ye. Global regularity for the 2D micropolar equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4133-4162. doi: 10.3934/dcds.2018180 |
[5] |
Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445 |
[6] |
Lorena Bociu, Petronela Radu, Daniel Toundykov. Errata: Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations and Control Theory, 2014, 3 (2) : 349-354. doi: 10.3934/eect.2014.3.349 |
[7] |
Lorena Bociu, Petronela Radu, Daniel Toundykov. Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations and Control Theory, 2013, 2 (2) : 255-279. doi: 10.3934/eect.2013.2.255 |
[8] |
Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57 |
[9] |
Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013 |
[10] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1345-1377. doi: 10.3934/dcdsb.2021093 |
[11] |
De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431 |
[12] |
Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173 |
[13] |
Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121 |
[14] |
Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 |
[15] |
Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108 |
[16] |
Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure and Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567 |
[17] |
Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469 |
[18] |
Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic and Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009 |
[19] |
Quansen Jiu, Jitao Liu. Global regularity for the 3D axisymmetric MHD Equations with horizontal dissipation and vertical magnetic diffusion. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 301-322. doi: 10.3934/dcds.2015.35.301 |
[20] |
Hantaek Bae. On the local and global existence of the Hall equations with fractional Laplacian and related equations. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022021 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]