• Previous Article
    Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay
  • CPAA Home
  • This Issue
  • Next Article
    Global wellposedness for a transport equation with super-critial dissipation
March  2011, 10(2): 667-686. doi: 10.3934/cpaa.2011.10.667

Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks

1. 

Mathématiques, Image et Applications Pôle Sciences et Technologies, Université de la Rochelle, France

2. 

Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany

3. 

United Arab Emirates University, P.O. Box 17551 Al Ain, United Arab Emirates

Received  April 2010 Revised  October 2010 Published  December 2010

We study the exponential stability of the Timoshenko beam system by interior time-dependent delay term feedbacks. The beam is clamped at the two hand points subject to two internal feedbacks: one with a time-varying delay and the other without delay. Using the variable norm technique of Kato, it is proved that the system is well-posed whenever an hypothesis between the weight of the delay term in the feedback, the weight of the term without delay and the wave speeds. By introducing an appropriate Lyapunov functional the exponential stability of the system is proved. Under the imposed constrain on the weights of the feedbacks and the wave speeds, the exponential decay of the energy is established via a suitable Lyapunov functional.
Citation: Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure and Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667
References:
[1]

C. Abdallah, P. Dorato, J. Benitez-Read and R. Byrne, Delayed positive feedback can stabilize oscillatory system, ACC. San Francisco, (1993), 3106-3107.

[2]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156. doi: doi:10.1137/0324007.

[3]

T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, C.I.M.E., II (1976), 125-191.

[4]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control. Optim., 25 (1987), 1417-1429. doi: doi:10.1137/0325078.

[5]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585. doi: doi:10.1137/060648891.

[6]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Diff. Int. Equs., 21 (2008), 935-958.

[7]

S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, submitted.

[8]

S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay, ESAIM Control. Optim. Calc. Var., 16 (2010), 420-456. doi: doi:10.1051/cocv/2009007.

[9]

S. Nicaise, J. Valein and E. Fridman, Stabilization of the heat and the wave equations with boundary time-varying delays, DCDS-S., 2 (2009), 559-581. doi: doi:10.3934/dcdss.2009.2.559.

[10]

C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Expoenetial stability for the Timoshenko system with two weak dampings, Appl. Math. Letters, 18 (2005), 535-541. doi: doi:10.1016/j.aml.2004.03.017.

[11]

J. E. Munoz Rivera and R. Racke, Timoshenko systems with indefinite damping, J. Math. Anal. Appl., 341 (2008), 1068-1083. doi: doi:10.1016/j.jmaa.2007.11.012.

[12]

B. Said-Houari and Y. Laskri, A stability result of a timoshenko system with a delay term in the internal feedback, Appl. Math. Comput., In Press; doi:10.1016/j.amc.2010.08.021.

[13]

D-H. Shi and D-X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback, IMA J. Math. Cont. Inf., 18 (2001), 395-403. doi: doi:10.1093/imamci/18.3.395.

[14]

A. Soufyane and A. Wehbe, Exponential stability for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations, 29 (2003), 1-14.

[15]

I. H. Suh and Z. Bien, Use of time delay action in the controller design, IEEE Trans. Automat. Control, 25 (1980), 600-603. doi: doi:10.1109/TAC.1980.1102347.

[16]

S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismaticbars, Philisophical. Magazine, 41 (1921), 744-746.

[17]

C. Q. Xu, S. P. Yung and L. K. Li, Stabilization of the wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785. doi: doi:10.1051/cocv:2006021.

show all references

References:
[1]

C. Abdallah, P. Dorato, J. Benitez-Read and R. Byrne, Delayed positive feedback can stabilize oscillatory system, ACC. San Francisco, (1993), 3106-3107.

[2]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156. doi: doi:10.1137/0324007.

[3]

T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, C.I.M.E., II (1976), 125-191.

[4]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control. Optim., 25 (1987), 1417-1429. doi: doi:10.1137/0325078.

[5]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585. doi: doi:10.1137/060648891.

[6]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Diff. Int. Equs., 21 (2008), 935-958.

[7]

S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, submitted.

[8]

S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay, ESAIM Control. Optim. Calc. Var., 16 (2010), 420-456. doi: doi:10.1051/cocv/2009007.

[9]

S. Nicaise, J. Valein and E. Fridman, Stabilization of the heat and the wave equations with boundary time-varying delays, DCDS-S., 2 (2009), 559-581. doi: doi:10.3934/dcdss.2009.2.559.

[10]

C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro, Expoenetial stability for the Timoshenko system with two weak dampings, Appl. Math. Letters, 18 (2005), 535-541. doi: doi:10.1016/j.aml.2004.03.017.

[11]

J. E. Munoz Rivera and R. Racke, Timoshenko systems with indefinite damping, J. Math. Anal. Appl., 341 (2008), 1068-1083. doi: doi:10.1016/j.jmaa.2007.11.012.

[12]

B. Said-Houari and Y. Laskri, A stability result of a timoshenko system with a delay term in the internal feedback, Appl. Math. Comput., In Press; doi:10.1016/j.amc.2010.08.021.

[13]

D-H. Shi and D-X. Feng, Exponential decay of Timoshenko beam with locally distributed feedback, IMA J. Math. Cont. Inf., 18 (2001), 395-403. doi: doi:10.1093/imamci/18.3.395.

[14]

A. Soufyane and A. Wehbe, Exponential stability for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations, 29 (2003), 1-14.

[15]

I. H. Suh and Z. Bien, Use of time delay action in the controller design, IEEE Trans. Automat. Control, 25 (1980), 600-603. doi: doi:10.1109/TAC.1980.1102347.

[16]

S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismaticbars, Philisophical. Magazine, 41 (1921), 744-746.

[17]

C. Q. Xu, S. P. Yung and L. K. Li, Stabilization of the wave system with input delay in the boundary control, ESAIM: Control Optim. Calc. Var., 12 (2006), 770-785. doi: doi:10.1051/cocv:2006021.

[1]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[2]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[3]

Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure and Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043

[4]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations and Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

[5]

Filippo Dell'Oro, Marcio A. Jorge Silva, Sandro B. Pinheiro. Exponential stability of Timoshenko-Gurtin-Pipkin systems with full thermal coupling. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2189-2207. doi: 10.3934/dcdss.2022050

[6]

Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036

[7]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[8]

Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110

[9]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[10]

Zhuan Ye. Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6725-6743. doi: 10.3934/dcdsb.2019164

[11]

Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121

[12]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[13]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic and Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[14]

Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014

[15]

Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048

[16]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[17]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[18]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[19]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[20]

Qiong Zhang. Exponential stability of a joint-leg-beam system with memory damping. Mathematical Control and Related Fields, 2015, 5 (2) : 321-333. doi: 10.3934/mcrf.2015.5.321

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (216)
  • HTML views (0)
  • Cited by (38)

[Back to Top]