• Previous Article
    An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue
  • CPAA Home
  • This Issue
  • Next Article
    Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks
March  2011, 10(2): 687-700. doi: 10.3934/cpaa.2011.10.687

Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay

1. 

Department of Mathematics and Systems Science, College of Science, National University of Defense Technology, Changsha, 410073, China, China

Received  January 2010 Revised  October 2010 Published  December 2010

In this paper, we consider the long time behavior of a non-autonomous parabolic PDE with a discrete state-dependent delay. We study the existence of compact kernel sections and unique complete trajectory of the corresponding problem. Furthermore, we obtain the (almost) periodic solution which attracts all solutions provided the time dependent terms are (almost) periodic with respect to time $t$.
Citation: Xiang Li, Zhixiang Li. Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay. Communications on Pure and Applied Analysis, 2011, 10 (2) : 687-700. doi: 10.3934/cpaa.2011.10.687
References:
[1]

W. Aiello, H. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52 (1992), 855-869. doi: doi:10.1137/0152048.

[2]

Y. Cao, J. Fan and T. Gard, The effects of state-dependent time delay on a state-structured population grouwth model, Nonlinear Anal. TMA, 19 (1992), 95-105. doi: doi:10.1016/0362-546X(92)90113-S.

[3]

F. Hartung, Linearized stability in periodic functional differential equations with state-dependent delays, J. Comput. Anal. Math., 174 (2005), 201-211. doi: doi:10.1016/j.cam.2004.04.006.

[4]

R. Torrejón, Positive almost periodic solutions of a state-dependent delay nonlinear integral equation, Nonlinear Anal. TMA, 20 (1993), 1383-1416. doi: doi:10.1016/0362-546X(93)90167-Q.

[5]

H. Walther, The solution manifold and $C^1$-smoothness of solution operators for differential equations with state dependent delay, J. Differential Equations, 195 (2003), 46-65. doi: doi:10.1016/j.jde.2003.07.001.

[6]

E. Hernóndez, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonlinear Anal. RWA, 7 (2006), 510-519. doi: doi:10.1016/j.nonrwa.2005.03.014.

[7]

E. Hernóndez, M. Mckibben and H. Henriquez, Existence results for partial neutral functional differential equations with state-dependent delay, Math. Comput. Modelling, 49 (2009), 1260-1267. doi: doi:10.1016/j.mcm.2008.07.011.

[8]

E. Hernóndez, M. Pierri and G. Goncalves, Existence results for an impulsive abstact partial differenrial equation with state-dependent delay, Comput. Math. Appl., 52 (2006), 411-420. doi: doi:10.1016/j.camwa.2006.03.022.

[9]

E. Hernóndez, R. Sakthivel and S. T. Aki, Existence results for impulsive evolution equation with state-dependent delay, E. J. Differential Equations, 2008 (2008), 1-11.

[10]

A. Rezounenko and J. Wu, A non-local PDE model for population dynamics with state-selective : Local theory and global attractors, J. Comput. Appl. Math., 190 (2006), 99-113. doi: doi:10.1016/j.cam.2005.01.047.

[11]

A. Rezounenko, Differential equations with discrete state dependent delay: uniqueness and well-posedness in the space of continuous functions, Nonlinear Anal. TMA, 70 (2009), 3978-3986. doi: doi:10.1016/j.na.2008.08.006.

[12]

A. Rezounenko, Partial differential equations with disctete and distributed state-dependent delays, J. Math. Anal. Appl., 326 (2007), 1031-1045. doi: doi:10.1016/j.jmaa.2006.03.049.

[13]

A. Rezounenko, On a class of P.D.E.s with nonlinear distirbuted in space and time state-dependent delay terms, Mathematics Methods in the Applied sciences, 31 (2008), 1569-1585. doi: doi:10.1002/mma.986.

[14]

A. Rezounenko, Non-linear partial differential equations with discrete state-dependent delays in a metric space, Nonlinear Anal., 73 (2010), 1707-1714. doi: doi:10.1016/j.na.2010.05.005.

[15]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics," AMS Providence, Rhode Island, 2001.

[16]

J. Wu, "Theory and Applications of Partial Functional Differential Equations," Springer-verlag, New York, 1996.

[17]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Defferential Equations," Applied Mathematical Sciences, vol.44, Springer, New York, Berlin, 1983.

[18]

M. Mackey and L. Glass, Oscillation and chaos in physiological control system, Science, 197 (1977), 287-289. doi: doi:10.1126/science.267326.

[19]

K. Gopalsamy, M. Kulenovi and G. Ladas, Oscillations and global attractivity in models of hematopoiesis, J. Dynamics and Differential Equations, 2 (1990), 117-132. doi: doi:10.1007/BF01057415.

[20]

K. Gopalsamy, S. Trofimchuk and N. Bantsur, A note on global attractivity in models of hematopoiesis, Ukrainian Mathematical J., 50 (1998), 3-12. doi: doi:10.1007/BF02514684.

[21]

X. Wang and Z. Li, Dynamics for a class of general Hematopoiesis model with periodic coefficients, Appl. Math. and Comput., 186 (2007), 460-468. doi: doi:10.1016/j.amc.2006.07.109.

[22]

X. Wang and Z. Li, Global attractivity, oscillation and Hopf bifurcation for a class of diffusive hematopoiesis models, Cent. Eur. J. Math., 5 (2007), 397-414. doi: doi:10.2478/s11533-006-0042-5.

show all references

References:
[1]

W. Aiello, H. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52 (1992), 855-869. doi: doi:10.1137/0152048.

[2]

Y. Cao, J. Fan and T. Gard, The effects of state-dependent time delay on a state-structured population grouwth model, Nonlinear Anal. TMA, 19 (1992), 95-105. doi: doi:10.1016/0362-546X(92)90113-S.

[3]

F. Hartung, Linearized stability in periodic functional differential equations with state-dependent delays, J. Comput. Anal. Math., 174 (2005), 201-211. doi: doi:10.1016/j.cam.2004.04.006.

[4]

R. Torrejón, Positive almost periodic solutions of a state-dependent delay nonlinear integral equation, Nonlinear Anal. TMA, 20 (1993), 1383-1416. doi: doi:10.1016/0362-546X(93)90167-Q.

[5]

H. Walther, The solution manifold and $C^1$-smoothness of solution operators for differential equations with state dependent delay, J. Differential Equations, 195 (2003), 46-65. doi: doi:10.1016/j.jde.2003.07.001.

[6]

E. Hernóndez, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonlinear Anal. RWA, 7 (2006), 510-519. doi: doi:10.1016/j.nonrwa.2005.03.014.

[7]

E. Hernóndez, M. Mckibben and H. Henriquez, Existence results for partial neutral functional differential equations with state-dependent delay, Math. Comput. Modelling, 49 (2009), 1260-1267. doi: doi:10.1016/j.mcm.2008.07.011.

[8]

E. Hernóndez, M. Pierri and G. Goncalves, Existence results for an impulsive abstact partial differenrial equation with state-dependent delay, Comput. Math. Appl., 52 (2006), 411-420. doi: doi:10.1016/j.camwa.2006.03.022.

[9]

E. Hernóndez, R. Sakthivel and S. T. Aki, Existence results for impulsive evolution equation with state-dependent delay, E. J. Differential Equations, 2008 (2008), 1-11.

[10]

A. Rezounenko and J. Wu, A non-local PDE model for population dynamics with state-selective : Local theory and global attractors, J. Comput. Appl. Math., 190 (2006), 99-113. doi: doi:10.1016/j.cam.2005.01.047.

[11]

A. Rezounenko, Differential equations with discrete state dependent delay: uniqueness and well-posedness in the space of continuous functions, Nonlinear Anal. TMA, 70 (2009), 3978-3986. doi: doi:10.1016/j.na.2008.08.006.

[12]

A. Rezounenko, Partial differential equations with disctete and distributed state-dependent delays, J. Math. Anal. Appl., 326 (2007), 1031-1045. doi: doi:10.1016/j.jmaa.2006.03.049.

[13]

A. Rezounenko, On a class of P.D.E.s with nonlinear distirbuted in space and time state-dependent delay terms, Mathematics Methods in the Applied sciences, 31 (2008), 1569-1585. doi: doi:10.1002/mma.986.

[14]

A. Rezounenko, Non-linear partial differential equations with discrete state-dependent delays in a metric space, Nonlinear Anal., 73 (2010), 1707-1714. doi: doi:10.1016/j.na.2010.05.005.

[15]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics," AMS Providence, Rhode Island, 2001.

[16]

J. Wu, "Theory and Applications of Partial Functional Differential Equations," Springer-verlag, New York, 1996.

[17]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Defferential Equations," Applied Mathematical Sciences, vol.44, Springer, New York, Berlin, 1983.

[18]

M. Mackey and L. Glass, Oscillation and chaos in physiological control system, Science, 197 (1977), 287-289. doi: doi:10.1126/science.267326.

[19]

K. Gopalsamy, M. Kulenovi and G. Ladas, Oscillations and global attractivity in models of hematopoiesis, J. Dynamics and Differential Equations, 2 (1990), 117-132. doi: doi:10.1007/BF01057415.

[20]

K. Gopalsamy, S. Trofimchuk and N. Bantsur, A note on global attractivity in models of hematopoiesis, Ukrainian Mathematical J., 50 (1998), 3-12. doi: doi:10.1007/BF02514684.

[21]

X. Wang and Z. Li, Dynamics for a class of general Hematopoiesis model with periodic coefficients, Appl. Math. and Comput., 186 (2007), 460-468. doi: doi:10.1016/j.amc.2006.07.109.

[22]

X. Wang and Z. Li, Global attractivity, oscillation and Hopf bifurcation for a class of diffusive hematopoiesis models, Cent. Eur. J. Math., 5 (2007), 397-414. doi: doi:10.2478/s11533-006-0042-5.

[1]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003

[2]

Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137

[3]

Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

[4]

Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633

[5]

Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607

[6]

Hans-Otto Walther. On solution manifolds of differential systems with discrete state-dependent delays. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022108

[7]

Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022

[8]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[9]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[10]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[11]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[12]

Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071

[13]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[14]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[15]

Qingwen Hu, Bernhard Lani-Wayda, Eugen Stumpf. Preface: Delay differential equations with state-dependent delays and their applications. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : i-i. doi: 10.3934/dcdss.20201i

[16]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[17]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[18]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[19]

Hermann Brunner, Stefano Maset. Time transformations for state-dependent delay differential equations. Communications on Pure and Applied Analysis, 2010, 9 (1) : 23-45. doi: 10.3934/cpaa.2010.9.23

[20]

Matthias Büger, Marcus R.W. Martin. Stabilizing control for an unbounded state-dependent delay equation. Conference Publications, 2001, 2001 (Special) : 56-65. doi: 10.3934/proc.2001.2001.56

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]