Citation: |
[1] |
B. Breuer, P. J. McKenna and M. Plum, Multiple Solutions for a semilinear boundary value problem: a computational multiplicity proof, Journal of Differential Equations, 195 (2003), 243-269.doi: doi:10.1016/S0022-0396(03)00186-4. |
[2] |
E. N. Dancer, A counterexample to the Lazer-McKenna conjecture, Nonlinear Analysis, Theory, Method & Applications, 13 (1989), 19-21. |
[3] |
E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, Journal of Differential Equations, 210 (2005), 317-351.doi: doi:10.1016/j.jde.2004.07.017. |
[4] |
E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture: Part II, Communications in Partial Differential Equations, 30 (2005), 1331-1358.doi: doi:10.1080/03605300500258865. |
[5] |
E. N. Dancer and Sanjiban Santra, On the superlinear Lazer-McKenna conjecture: the non-homogeneous case, Adv. Differential Equations, 12 (2007), 961-993. |
[6] |
Manuel del Pino and Claudio Muñoz, The two-dimensional Lazer-McKenna conjecture for an exponential nonlinearity, J. Differential Equations, 231 (2006), 108-134. |
[7] |
O. Druet, The critical Lazer-McKenna conjecture in low dimensions, Journal of Differential Equations, 245 (2008), 2199-2242.doi: doi:10.1016/j.jde.2008.05.002. |
[8] |
Helmut Hofer, Variational and topological methods in partially ordered Hilbert Space, Mathematishe Annalen, 261 (1982), 293-514.doi: doi:10.1007/BF01457453. |
[9] |
Gongbao Li, Shusen Yan and Jianfu Yang, The Lazer-McKenna conjecture for an elliptic problem with critical growth, Calc. Var. Partial Differential Equations, 28 (2007), 471-508.doi: doi:10.1007/s00526-006-0051-z. |
[10] |
Riccardo Molle and Donato Passaseo, Multiple solutions for a class of elliptic equations with jumping nonlinearities, Poincaré Anal. Non Linéaire, 27 (2010), 529-553. |
[11] |
Filomena Pacella and P. N. Srikanth, Nonradial solutions of a nonhomogeneous semilinear elliptic problem with linear growth, J. Math. Anal. Appl., 341 (2008), 131-139.doi: doi:10.1016/j.jmaa.2007.09.059. |
[12] |
J. Wei and S. Yan, Lazer-McKenna conjecture: the critical case Journal of Functional Analysis, 244 (2007), 639-667.doi: doi:10.1016/j.jfa.2006.11.002. |