\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: some numerical evidence

Abstract Related Papers Cited by
  • We investigate a conjecture regarding the number of solutions of a second order elliptic boundary value problem with an asymmetric nonlinearity. This investigation makes use of several computer assisted techniques. First, we compute approximate solutions using Newton's Iteration for small $b$ and then use a continuation method to show that the number of solutions becomes large as $b$ increases.
    Mathematics Subject Classification: Primary: 35B40, 35J25; Secondary: 35B06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Breuer, P. J. McKenna and M. Plum, Multiple Solutions for a semilinear boundary value problem: a computational multiplicity proof, Journal of Differential Equations, 195 (2003), 243-269.doi: doi:10.1016/S0022-0396(03)00186-4.

    [2]

    E. N. Dancer, A counterexample to the Lazer-McKenna conjecture, Nonlinear Analysis, Theory, Method & Applications, 13 (1989), 19-21.

    [3]

    E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture, Journal of Differential Equations, 210 (2005), 317-351.doi: doi:10.1016/j.jde.2004.07.017.

    [4]

    E. N. Dancer and S. Yan, On the superlinear Lazer-McKenna conjecture: Part II, Communications in Partial Differential Equations, 30 (2005), 1331-1358.doi: doi:10.1080/03605300500258865.

    [5]

    E. N. Dancer and Sanjiban Santra, On the superlinear Lazer-McKenna conjecture: the non-homogeneous case, Adv. Differential Equations, 12 (2007), 961-993.

    [6]

    Manuel del Pino and Claudio Muñoz, The two-dimensional Lazer-McKenna conjecture for an exponential nonlinearity, J. Differential Equations, 231 (2006), 108-134.

    [7]

    O. Druet, The critical Lazer-McKenna conjecture in low dimensions, Journal of Differential Equations, 245 (2008), 2199-2242.doi: doi:10.1016/j.jde.2008.05.002.

    [8]

    Helmut Hofer, Variational and topological methods in partially ordered Hilbert Space, Mathematishe Annalen, 261 (1982), 293-514.doi: doi:10.1007/BF01457453.

    [9]

    Gongbao Li, Shusen Yan and Jianfu Yang, The Lazer-McKenna conjecture for an elliptic problem with critical growth, Calc. Var. Partial Differential Equations, 28 (2007), 471-508.doi: doi:10.1007/s00526-006-0051-z.

    [10]

    Riccardo Molle and Donato Passaseo, Multiple solutions for a class of elliptic equations with jumping nonlinearities, Poincaré Anal. Non Linéaire, 27 (2010), 529-553.

    [11]

    Filomena Pacella and P. N. Srikanth, Nonradial solutions of a nonhomogeneous semilinear elliptic problem with linear growth, J. Math. Anal. Appl., 341 (2008), 131-139.doi: doi:10.1016/j.jmaa.2007.09.059.

    [12]

    J. Wei and S. Yan, Lazer-McKenna conjecture: the critical case Journal of Functional Analysis, 244 (2007), 639-667.doi: doi:10.1016/j.jfa.2006.11.002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return