\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Inertial manifolds for stochastic pde with dynamical boundary conditions

Abstract Related Papers Cited by
  • In this article we investigate the dynamics of stochastic partial differential equations with dynamical boundary conditions. We prove that such a problem with Lipschitz continuous non--linearity generates a random dynamical system. The main result is to show that this random dynamical system has an inertial manifold. Under additional assumptions on the non--linearity this manifold is differentiable.
    Mathematics Subject Classification: Primary: 37L55; Secondary: 60H15, 35B42.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann and J. Escher, Strongly continuous dual semigroups, Ann. Mat. Pura Appl., 171 (1996), 41-62.doi: doi:10.1007/BF01759381.

    [2]

    L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

    [3]

    A. F. Bennett and P. E. Kloeden, The dissipative quasigeostrophic equations, Mathematika, 28 (1982), 265-285.doi: doi:10.1112/S0025579300010329.

    [4]

    P. Brune, "Inertiale Mannigfaltigkeiten von stochastischen PDE's mit dynamischen Randbedingungen," Diplomarbeit, Universität Paderborn, 2006.

    [5]

    T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. ValeroMultivalued non-autonomous and random dynamical systems, pullback and random attractors, functional stochastic equations, conjugacy method. Submitted.

    [6]

    C. Castaing and M. Valadier, "Convex Analysis and Measurable Multifunctions," Springer-Verlag, Berlin, 1977. Lecture Notes in Mathematics, Vol. 580.

    [7]

    S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations, 74 (1988), 285-317.doi: doi:10.1016/0022-0396(88)90007-1.

    [8]

    S.-N. Chow, K. Lu, and G. R. Sell, Smoothness of inertial manifolds, J. Math. Anal. Appl., 169 (1992), 283-312.doi: doi:10.1016/0022-247X(92)90115-T.

    [9]

    I. Chueshov and B. Schmalfuss, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions, Discrete Contin. Dyn. Syst., 18 (2007), 315-338.doi: doi:10.3934/dcds.2007.18.315.

    [10]

    I. D. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems," AKTA, Kharkiv, 2002.

    [11]

    I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dynam. Differential Equations, 13 (2001), 355-380.doi: doi:10.1023/A:1016684108862.

    [12]

    G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," volume 44 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1992.

    [13]

    J. Duan, K. Lu, and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.doi: doi:10.1214/aop/1068646380.

    [14]

    J. Duan, K. Lu, and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.doi: doi:10.1007/s10884-004-7830-z.

    [15]

    J. Escher, A note on quasilinear parabolic systems with dynamical boundary conditions, In "Progress in Partial Differential Equations: the Metz Surveys," 2 (1992), volume 296 of Pitman Res. Notes Math. Ser., pages 138-148. Longman Sci. Tech., Harlow, 1993.

    [16]

    J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364.doi: doi:10.1080/03605309308820976.

    [17]

    G. Francois, Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions, Asymptot. Anal., 46 (2006), 43-52.

    [18]

    M. J. Garrido Atienza, K. Lu, and B. SchmalfußUnstable manifolds for a stochastic partial differential equation driven by a fractional Brownian motion, Manuscript.

    [19]

    K. Lu and B. Schmalfuß, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492.doi: doi:10.1016/j.jde.2006.09.024.

    [20]

    G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," volume 143 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002.

    [21]

    T. Wanner, Linearization of random dynamical systems, In Dynamics reported, volume 4 of Dynam. Report. Expositions Dynam. Systems (N.S.), pages 203-269. Springer, Berlin, 1995.

    [22]

    J. Wloka, "Partielle Differentialgleichungen," B. G. Teubner, Stuttgart, 1982.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return