[1]

A. Avila, On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators, Commun. Math. Phys., 288 (2009), 907918.

[2]

J. Avron and B. Simon, Almost periodic Schrödinger operators. I. Limit periodic potentials, Commun. Math. Phys., 82 (1981), 101120.

[3]

V. Chulaevsky, Perturbations of a Schrödinger operator with periodic potential, Uspekhi Mat. Nauk, 36 (1981), 203204.

[4]

V. Chulaevsky, "Almost Periodic Operators and Related Nonlinear Integrable Systems," Manchester University Press, Manchester, 1989.

[5]

D. Damanik and Z. Gan, Limitperiodic Schrödinger operators in the regime of positive Lyapunov exponents, J. Funct. Anal., 258 (2010), 40104025.

[6]

F. Delyon and D. Petritis, Absence of localization in a class of Schrödinger operators with quasiperiodic potential, Commun. Math. Phys., 103 (1986), 441444.

[7]

A. Gordon, The point spectrum of the onedimensional Schrödinger operator, Usp. Math. Nauk., 31 (1976), 257258.

[8]

Y. Last, On the measure of gaps and spectra for discrete $1$D Schrödinger operators, Commun. Math. Phys., 149 (1992), 347360.

[9]

S. Molchanov and V. Chulaevsky, The structure of a spectrum of the lacunarylimitperiodic Schrödinger operator, Functional Anal. Appl., 18 (1984), 343344.

[10]

J. Moser, An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum, Comment. Math. Helv., 56 (1981), 198224.

[11]

J. Pöschel, Examples of discrete Schrödinger operators with pure point spectrum, Commun. Math. Phys., 88 (1983), 447463.

[12]

L. Ribes and P. Zalesskii, "Profinite Groups," SpringerVerlag, Berlin, 2000.

[13]

B. Simon, Szegös theorem and its descendants: spectral theory for $l^2$ perturbations of orthogonal polynomials, Princeton University Press, 2010

[14]

G. Teschl, "Jacobi Operators and Completely Integrable Nonlinear Lattices," Mathematical Surveys and Monographs 72, American Mathematical Society, Providence, RI, 2000.

[15]

M. Toda, "Theory of Nonlinear Lattices," 2nd edition, Springer Series in SolidState Sciences 20, SpringerVerlag, Berlin, 1989.

[16]

J. Wilson, "Profinite Groups," Oxford University Press, New York, 1998.
