
Previous Article
On $SL(2, R)$ valued cocycles of Hölder class with zero exponent over Kronecker flows
 CPAA Home
 This Issue

Next Article
Topological conjugacy for affinelinear flows and control systems
Spectral properties of limitperiodic Schrödinger operators
1.  Department of Mathematics, Rice University, Houston, TX 77005, USA Government 
References:
show all references
References:
[1] 
Yulia Karpeshina and YoungRan Lee. On polyharmonic operators with limitperiodic potential in dimension two. Electronic Research Announcements, 2006, 12: 113120. 
[2] 
Jean Bourgain. On quasiperiodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 7588. doi: 10.3934/dcds.2004.10.75 
[3] 
Xinlin Cao, YiHsuan Lin, Hongyu Liu. Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators. Inverse Problems and Imaging, 2019, 13 (1) : 197210. doi: 10.3934/ipi.2019011 
[4] 
Woocheol Choi, YongCheol Kim. The MalgrangeEhrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure and Applied Analysis, 2018, 17 (5) : 19932010. doi: 10.3934/cpaa.2018095 
[5] 
Jussi Behrndt, A. F. M. ter Elst. The DirichlettoNeumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems  S, 2017, 10 (4) : 661671. doi: 10.3934/dcdss.2017033 
[6] 
Juan Arratia, Denilson Pereira, Pedro Ubilla. Elliptic systems involving Schrödinger operators with vanishing potentials. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 13691401. doi: 10.3934/dcds.2021156 
[7] 
J. Douglas Wright. On the spectrum of the superposition of separated potentials.. Discrete and Continuous Dynamical Systems  B, 2013, 18 (1) : 273281. doi: 10.3934/dcdsb.2013.18.273 
[8] 
Rémi Carles, Christof Sparber. Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials. Discrete and Continuous Dynamical Systems  B, 2012, 17 (3) : 759774. doi: 10.3934/dcdsb.2012.17.759 
[9] 
Dongdong Qin, Xianhua Tang, Qingfang Wu. Ground states of nonlinear Schrödinger systems with periodic or nonperiodic potentials. Communications on Pure and Applied Analysis, 2019, 18 (3) : 12611280. doi: 10.3934/cpaa.2019061 
[10] 
Woocheol Choi, YongCheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 58115834. doi: 10.3934/dcds.2018253 
[11] 
Vagif S. Guliyev, Ramin V. Guliyev, Mehriban N. Omarova, Maria Alessandra Ragusa. Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials. Discrete and Continuous Dynamical Systems  B, 2020, 25 (2) : 671690. doi: 10.3934/dcdsb.2019260 
[12] 
Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and signchanging nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143161. doi: 10.3934/cpaa.2018009 
[13] 
Lihui Chai, Shi Jin, Qin Li. Semiclassical models for the Schrödinger equation with periodic potentials and band crossings. Kinetic and Related Models, 2013, 6 (3) : 505532. doi: 10.3934/krm.2013.6.505 
[14] 
Yingte Sun. Floquet solutions for the Schrödinger equation with fastoscillating quasiperiodic potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 45314543. doi: 10.3934/dcds.2021047 
[15] 
Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 56895709. doi: 10.3934/dcds.2015.35.5689 
[16] 
Evgeny Korotyaev, Natalia Saburova. Twosided estimates of total bandwidth for Schrödinger operators on periodic graphs. Communications on Pure and Applied Analysis, 2022, 21 (5) : 16911714. doi: 10.3934/cpaa.2022042 
[17] 
Russell Johnson, Luca Zampogni. Some examples of generalized reflectionless Schrödinger potentials. Discrete and Continuous Dynamical Systems  S, 2016, 9 (4) : 11491170. doi: 10.3934/dcdss.2016046 
[18] 
Tadahiro Oh. Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data. Communications on Pure and Applied Analysis, 2015, 14 (4) : 15631580. doi: 10.3934/cpaa.2015.14.1563 
[19] 
Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems and Imaging, 2014, 8 (2) : 475489. doi: 10.3934/ipi.2014.8.475 
[20] 
Jaime CruzSampedro. Schrödingerlike operators and the eikonal equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 495510. doi: 10.3934/cpaa.2014.13.495 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]