\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On $SL(2, R)$ valued cocycles of Hölder class with zero exponent over Kronecker flows

Abstract Related Papers Cited by
  • We show that a generic $SL(2,R)$ valued cocycle in the class of $C^r$, ($0 < r < 1$) cocycles based on a rotation flow on the $d$-torus, is either uniformly hyperbolic or has zero Lyapunov exponents provided that the components of winding vector $\bar \gamma = (\gamma^1,\cdot \cdot \cdot,\gamma^d)$ of the rotation flow are rationally independent and satisfy the following super Liouvillian condition :

    $ |\gamma^i - \frac{p^i_n}{q_n}| \leq Ce^{-q^{1+\delta}_n}, 1\leq i\leq d, n\in N,$

    where $C > 0$ and $\delta > 0$ are some constants and $p^i_n, q_n$ are some sequences of integers with $q_n\to \infty$.

    Mathematics Subject Classification: Primary: 37B55, 34A30; Secondary: 58F15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Bochi, Genericity of zero Lyapunov exponents, Ergodic Theory and Dynamical Systems, 22 (2002), 1667-1696.doi: doi:10.1017/S0143385702001165.

    [2]

    J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic maps, Ann. of Math., 161 (2005), 1423-1485.doi: doi:10.4007/annals.2005.161.1423.

    [3]

    Roberta Fabbri, "Genericità dell'iperbolicità nei sistemi differenziali lineari di dimensione due," Ph.D. Thesis, Università di Firenze, 1997.

    [4]

    R. Fabbri and R. Johnson, On the Lyapunov exponent of certain $SL(2,R)$ valued cocycles, Differential Equations and Dynamical Systems, 7 (1999), 349-370.

    [5]

    R. Fabbri, R. Johnson and R. Pavani, On the nature of the spectrum of the quasi-periodic Schrödinger operator, Nonlinear Analysis: Real World Applications, 3 (2002), 37-59.doi: doi:10.1016/S1468-1218(01)00012-8.

    [6]

    R. Johnson, Exponential dichotomy, rotation number and linear differential operatorss with bounded coefficients, Jour. Diff. Equn., 61 (1986), 54-78.doi: doi:10.1016/0022-0396(86)90125-7.

    [7]

    R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438.doi: doi:10.1007/BF01208484.

    [8]

    R. Johnson, K. Palmer and G. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., 18 (1987), 1-33.doi: doi:10.1137/0518001.

    [9]

    J. Moser, An example of a Schrodinger equation with almost periodic potential and nowhere dense spectrum, Comment. Math. Helvetici, 56 (1981), 198-224.doi: doi:10.1007/BF02566210.

    [10]

    M. Nerurkar, Positive exponents for a dense class of continuous $SL(2,R)$ valued cocycles which arise as solutions to strongly accessible linear differential systems, Contemp. Math., 215 (1998), 265-278.

    [11]

    M. Nerurkar, Density of positive Lyapunov exponents in the smooth category, preprint (2008).

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return