Citation: |
[1] |
M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system, J. Differential Equations, 245 (2008), 505-565. |
[2] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974), 5-49. Lecture Notes in Math., Vol. 446, Springer, Berlin, 1975. |
[3] |
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. |
[4] |
G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE, Duke Math. J., 61 (1990), 835-858. |
[5] |
G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 679-684. |
[6] |
H. Berestycki and F. Hamel, On the general definition of transition waves and their properties, preprint. |
[7] |
H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. II. General domains, J. Amer. Math. Soc., 23 (2010), 1-34. |
[8] |
H. Berestycki, F. Hamel and L. Roques, Équations de réaction-diffusion et modèles d'invasions biologiques dans les milieux périodiques, C. R. Math. Acad. Sci. Paris, 339 (2004), 549-554. |
[9] |
X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141. |
[10] |
L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J., 38 (1989), 141-172. |
[11] |
E. Feireisl, Front propagation for degenerate parabolic equations, Nonlinear Anal., 35 (1999), Ser. A: Theory Methods, 735-746. |
[12] |
R. A. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 7 (1937), 355-369. |
[13] |
M. I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations, Ann. Probab., 13 (1985), 639-675. |
[14] |
D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion, J. Differential Equations, 244 (2008), 2872-2889. |
[15] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'Etat Moscou, Bjul. Moskowskogo Gos. Univ., 1937, 1-26. |
[16] |
H. Malchow, S. V. Petrovskii and E. Venturino, "Spatiotemporal Patterns in Ecology and Epidemiology. Theory, Models, and Simulations," Mathematical and Computational Biology Series, Chapman $&$ Hall/CRC Press, Boca Raton, FL, 2008. |
[17] |
S. V. Petrovskii and H. Malchow, eds. (2005), "Biological Invasions in a Mathematical Perspective," (A special issue of Biological Invasions: Proceedings of Computational and Mathematical Population Dynamics, Trento, June 21-25, 2004), Springer, Dordrecht, 128 p. |
[18] |
N. Shigesada and K. Kawasaki, "Biological Invasion: Theory and Practise," Oxford University Press, 1997. |
[19] |
S. Vakulenko and V. Volpert, Generalized travelling waves for perturbed monotone reaction-diffusion systems, Nonlinear Anal., 46 (2001), Ser. A: Theory Methods, 757-776. |
[20] |
A. Volpert, V. Volpert, V. Volpert, "Travelling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, vol. 140, AMS Providence, RI, 1994. |