Advanced Search
Article Contents
Article Contents

Carleman estimates for the Schrödinger operator and applications to unique continuation

Abstract Related Papers Cited by
  • We extend previously known Carleman estimates [18, 16, 11] for the (time-dependent) Schrödinger operator $i\partial_t+\Delta$ to a wider range for which inhomogeneous Strichartz estimates ([9, 27]) are known to hold. Then we apply them to obtain new results on unique continuation for the Schrödinger equation which include more general classes of potentials. Also, we obtain a unique continuation result for nonlinear Schrödinger equations.
    Mathematics Subject Classification: Primary: 35B45, 35B60; Secondary: 35Q40, 35Q55.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction," Springer-Verlag, Berlin-New York, 1976.


    J. Bourgain, On the compactness of the support of solutions of dispersive equations, Internat. Math. Res. Notices, (1997), 437-447.doi: 10.1155/S1073792897000305.


    T. Carleman, Sur un problème d'unicité pour les systèmes d'équations aux derivées partielles à deux variables indépendantes, Ark. Mat., Astr. Fys., 26 (1939), 1-9.


    L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135-157.doi: 10.1007/BF02392815.


    T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.doi: 10.1007/BF02099529.


    L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J., 104 (2000), 113-127.doi: 10.1215/S0012-7094-00-10415-2.


    L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega, On uniqueness properties of solutions of Schrödinger equations, Comm. Partial Differential Equations, 31 (2006), 1811-1823.doi: 10.1080/03605300500530446.


    L. Escauriaza and L. Vega, Carleman inequalities and the heat operator. II, Indiana Univ. Math. J., 50 (2001), 1149-1169.doi: 10.1512/iumj.2001.50.1937.


    D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.doi: 10.1142/S0219891605000361.


    J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 309-327.


    A. D. Ionescu and C. E. Kenig, $L^p$ Carleman inequalities and uniqueness of solutions of nonlinear Schrödinger equations, Acta Math., 193 (2004), 193-239.doi: 10.1007/BF02392564.


    D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues of Schrödinger operators, Ann. of Math., 121 (1985), 463-488.doi: 10.2307/1971205.


    T. Kato, An $L^{q,r}$-theory for nonlinear Schrödinger equations}, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Toyko, 1994, pp. 223-238.


    M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.doi: 10.1353/ajm.1998.0039.


    C. E. Kenig and N. Nadirashvili, A counterexample in unique continuation, Math. Res. Lett., 7 (2000), 625-630.


    C. E. Kenig, G. Ponce and L. Vega, On unique continuation for nonlinear Schrödinger equations, Comm. Pure Appl. Math., 56 (2003), 1247-1262.doi: 10.1002/cpa.10094.


    C. E. Kenig, A. Ruiz and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55 (1987), 329-347.doi: 10.1215/S0012-7094-87-05518-9.


    C. E. Kenig and C. D. Sogge, A note on unique continuation for Schrödinger's operator, Proc. Amer. Math. Soc., 103 (1988), 543-546.doi: 10.2307/2047176.


    H. Koch and D. Tataru, Sharp counterexamples in unique continuation for second order elliptic equations, J. Reine Angew. Math., 542 (2002), 133-146.doi: 10.1515/crll.2002.003.


    C. Müller, On the behavior of the solutions of the differential equation $\Delta U=F(x,U)$ in the neighborhood of a point, Comm. Pure Appl. Math., 7 (1954), 505-515.doi: 10.1002/cpa.3160070304.


    E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton University Press, Princeton, N.J., 1970.


    E. M. Stein, Oscillatory integrals in Fourier analysis, in "Beijing Lectures in Harmonic Analysis" (ed. E. M. Stein), Princeton University Press, (1986), 307-355.


    E. M. Stein, "Harmonic Analysis. Real-variable Methods, Orthogonality and Oscillatory Integrals," Princeton University. Press, Princeton, N.J., 1993.


    R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.doi: 10.1215/S0012-7094-77-04430-1.


    P. A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc., 81 (1975), 477-478.doi: 10.1090/S0002-9904-1975-13790-6.


    H. Triebel, "Interpolation Theory, Function Spaces, Differential operator," North-Holland, New York, 1978.


    M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 2123-2136.doi: 10.1090/S0002-9947-06-04099-2.


    T. H. Wolff, Note on counterexamples in strong unique continuation problems, Proc. Amer. Math. Soc., 114 (1992), 351-356.doi: 10.1090/S0002-9939-1992-1014648-2.


    B. -Y. Zhang, Unique continuation properties of the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 191-205.doi: 10.1017/S0308210500023581.

  • 加载中

Article Metrics

HTML views() PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint