Advanced Search
Article Contents
Article Contents

Schauder type estimates of linearized Mullins-Sekerka problem

Abstract Related Papers Cited by
  • In this paper we obtain a Caccioppoli type estimate for the model of the linearized Mullins-Sekerka equations by a new technique, then we use this estimate to derive it's Schauder type estimates by polynomial approximation method.
    Mathematics Subject Classification: Primary: 35B65, 35R35; Secondary: 35H99.


    \begin{equation} \\ \end{equation}
  • [1]

    L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math., 130 (1989), 189-213.doi: 10.2307/1971480.


    L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl., 4 (1998), 383-402.doi: 10.1007/BF02498216.


    L. A. Caffarelli, "The Obstacle Problem. Lezioni Fermiane," [Fermi Lectures], Accademia Nazionale dei Lincei, Rome, 1998.


    X. Chen, J. Hong and F. Yi, Existence,uniqueness,and regularity of classical solutions of the mullins-sekerka problem, Comm. In. PDE, 21 (1996), 1705-1727.doi: 10.1016/j.jde.2004.10.028.


    X. Chen and F. Retich, Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling, J. Math. Anal. Appl., 164 (1992), 350-362.doi: 10.1016/0022-247X(92)90119-X.


    E. Milakis and L. E. Silvestre, Regularity for fully nonlinear elliptic equations with neumann boundary data, Com. in Partial Differential Equations, 31 (2006), 1227-1252.doi: 10.1080/03605300600634999.


    E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," vol. 30 of PMS. Princeton University Press, 1971.


    L. Wang, On the regularity theory of fully nonlinear parabolic equations. I, Comm. Pure Appl. Math., 45 (1992), 27-76.


    L. Wang, On the regularity theory of fully nonlinear parabolic equations. II, Comm. Pure Appl. Math., 45 (1992), 141-178.

  • 加载中

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint