-
Previous Article
A faithful symbolic extension
- CPAA Home
- This Issue
-
Next Article
Carleman estimates for the Schrödinger operator and applications to unique continuation
Schauder type estimates of linearized Mullins-Sekerka problem
1. | Department of Mathematics, Ningbo University, Ningbo, Zhejiang, 315211, China |
2. | Department of Mathematics, University of Iowa, Iowa City, IA 52242 |
References:
[1] |
L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math., 130 (1989), 189-213.
doi: 10.2307/1971480. |
[2] |
L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl., 4 (1998), 383-402.
doi: 10.1007/BF02498216. |
[3] |
L. A. Caffarelli, "The Obstacle Problem. Lezioni Fermiane," [Fermi Lectures], Accademia Nazionale dei Lincei, Rome, 1998. |
[4] |
X. Chen, J. Hong and F. Yi, Existence,uniqueness,and regularity of classical solutions of the mullins-sekerka problem, Comm. In. PDE, 21 (1996), 1705-1727.
doi: 10.1016/j.jde.2004.10.028. |
[5] |
X. Chen and F. Retich, Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling, J. Math. Anal. Appl., 164 (1992), 350-362.
doi: 10.1016/0022-247X(92)90119-X. |
[6] |
E. Milakis and L. E. Silvestre, Regularity for fully nonlinear elliptic equations with neumann boundary data, Com. in Partial Differential Equations, 31 (2006), 1227-1252.
doi: 10.1080/03605300600634999. |
[7] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," vol. 30 of PMS. Princeton University Press, 1971. |
[8] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations. I, Comm. Pure Appl. Math., 45 (1992), 27-76. |
[9] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations. II, Comm. Pure Appl. Math., 45 (1992), 141-178. |
show all references
References:
[1] |
L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math., 130 (1989), 189-213.
doi: 10.2307/1971480. |
[2] |
L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl., 4 (1998), 383-402.
doi: 10.1007/BF02498216. |
[3] |
L. A. Caffarelli, "The Obstacle Problem. Lezioni Fermiane," [Fermi Lectures], Accademia Nazionale dei Lincei, Rome, 1998. |
[4] |
X. Chen, J. Hong and F. Yi, Existence,uniqueness,and regularity of classical solutions of the mullins-sekerka problem, Comm. In. PDE, 21 (1996), 1705-1727.
doi: 10.1016/j.jde.2004.10.028. |
[5] |
X. Chen and F. Retich, Local existence and uniqueness of solutions of the stefan problem with surface tension and kinetic undercooling, J. Math. Anal. Appl., 164 (1992), 350-362.
doi: 10.1016/0022-247X(92)90119-X. |
[6] |
E. Milakis and L. E. Silvestre, Regularity for fully nonlinear elliptic equations with neumann boundary data, Com. in Partial Differential Equations, 31 (2006), 1227-1252.
doi: 10.1080/03605300600634999. |
[7] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," vol. 30 of PMS. Princeton University Press, 1971. |
[8] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations. I, Comm. Pure Appl. Math., 45 (1992), 27-76. |
[9] |
L. Wang, On the regularity theory of fully nonlinear parabolic equations. II, Comm. Pure Appl. Math., 45 (1992), 141-178. |
[1] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 3973-3987. doi: 10.3934/dcdss.2020467 |
[2] |
Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225 |
[3] |
Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014 |
[4] |
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424 |
[5] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[6] |
Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control and Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307 |
[7] |
Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021060 |
[8] |
John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems and Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333 |
[9] |
Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 |
[10] |
J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176 |
[11] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340 |
[12] |
Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62 |
[13] |
Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961 |
[14] |
Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711 |
[15] |
Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088 |
[16] |
Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076 |
[17] |
Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605 |
[18] |
Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46 |
[19] |
Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012 |
[20] |
Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic and Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]