Citation: |
[1] |
V. Buslaev, A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitary waves in a nonlinear Schrödinger equation, Comm. Partial Diff. Eqns., \textbf{33} (2008), 669-705.doi: 10.1080/03605300801970937. |
[2] |
V. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 20 (2003), 419-475.doi: 10.1016/S0294-1449(02)00018-5. |
[3] |
A. I. Komech and A. A. Komech, Global well-posedness for the Schrödinger equation coupled to a nonlinear oscillator, Russ. J. Math. Phys., 14 (2007), 164-173.doi: 10.1134/S1061920807020057. |
[4] |
A. Komech and E.Kopylova, On Asymptotic stability of moving kink for relativistic Ginsburg-Landau equation, Commun. Math. Phys., 302 (2011), 225-252.doi: 10.1007/s00220-010-1184-7. |
[5] |
A. Komech, E. Kopylova and D. Stuart, On asymptotic stability of solitons for nonlinear Schrödinger equation, preprint, arXiv:0807.1878. |
[6] |
M. Merkli and I. M. Sigal, A time-dependent theory of quantum resonances, Commun. Math. Phys., 201 (1999), 549-576.doi: 10.1007/s002200050568. |
[7] |
R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves, Commun. Math. Phys., 164 (1994), 305-349.doi: 10.1007/BF02101705. |
[8] |
C. A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Diff. Eqns, 141 (1997), 310-326.doi: 10.1006/jdeq1997.3345. |
[9] |
A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), 9-74.doi: 10.1007/s002220050303. |
[10] |
A. Soffer and M. I. Weinstein, Selection of the ground state for nonlinear Schrodinger equations, Rev. Math. Phys., 16 (2004), 977-1071.doi: 10.1142/S0129055X04002175. |