Citation: |
[1] |
M. Bardi and L. C. Evans, On Hopf's formula for solutions of Hamilton-Jacobi equations, Nonlinear Anal., Th., Meth. & Appl., 8 (1984), 1373-1381.doi: 10.1016/0362-546X(84)90020-8. |
[2] |
O. Bernardi and F. Cardin, On $C^0$-variational solutions for Hamilton-Jacobi equations, DCDS-A, 31 (2011), 385-406.doi: 10.3934/dcds.2011.31.385. |
[3] |
M. Brunella, On a theorem of Sikorav, Ens. Math., 37 (1991), 83-87. |
[4] |
F. Cardin, On viscosity solutions and geometrical solutions of Hamilton Jacobi equations, Nonlinear Anal., Th., Meth. & Appl., 20 (1993), 713-719.doi: 10.1016/0362-546X(93)90029-R. |
[5] |
M. Chaperon, Lois de conservation et geometrie symplectique, C. R. Acad. Sci. Paris, Ser. I Math., 312 (1991), 345-348. |
[6] |
J. C. Doyle, K. Glover, P. Pramod and B. A. Francis, State space solutions to standard $H_2$ and $H_{\infty}$ control problems, IEEE Trans. Automatic Control, AC-34 (1989), 831-847.doi: 10.1109/9.29425. |
[7] |
E. Hopf, Generalized solutions of non-linear equations of first order, J. Math. & Mech., 14 (1965), 951-973. |
[8] |
T. Joukovskaia, "Singularités de Minimax et Solutions Faibles d'Équations aux Dérivées Partielles," Thèse de Doctorat, Université de Paris VII, Denis Diderot, 1993. |
[9] |
D. McCaffrey, Geometric existence theory for the control-affine $H_{\infty}$ problem, J. Math. Anal. & Applic., 324 (2006), 682-695.doi: 10.1016/j.jmaa.2005.12.034. |
[10] |
D. McCaffrey, Graph selectors and viscosity solutions on Lagrangian manifolds, ESAIM: Control, Opt. & Calc. of Variations, 12 (2006), 795-815.doi: 10.1051/cocv:2006023. |
[11] |
G. P. Paternain, L. Polterovich and K. F. Siburg, Boundary rigidity for Lagrangian submanifolds, non-removable intersections and Aubry-Mather theory, Moscow Math. J., 3 (2003), 593-619.doi: 10.3929/ethz-a-004520619. |
[12] |
K. F. Siburg, "The Principle of Least Action in Geometry and Dynamics," Lecture Notes in Mathematics 1844, Springer-Verlag, Berlin, 2003. |
[13] |
J. C. Sikorav, Sur les immersions lagrangiennes dans un fibre cotangent admettant une phase generatrice globale, C. R. Acad. Sci. Paris, Ser. I Math., 302 (1986), 119-122. |
[14] |
P. Soravia, $H_{\infty}$ control of nonlinear systems: differential games and viscosity solutions, SIAM J. Control and Opt., 34 (1996), 1071-1097.doi: 10.1137/S0363012994266413. |
[15] |
A. J. van der Schaft, On a state space approach to nonlinear $H_{\infty}$ control, Syst. & Control Letters, 16 (1991), 1-8.doi: 10.1016/0167-6911(91)90022-7. |
[16] |
C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685-710.doi: 10.1007/BF01444643. |
[17] |
A. Ottolengi and C. Viterbo, Solutions generalisees pour l'equation de Hamilton-Jacobi dans le cas d'evolution, preprint. |
[18] |
C. Viterbo, Symplectic topology and Hamilton-Jacobi equations, in "Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology," NATO Sci. Ser., 217, Springer, Dordrecht (1992), 439-459. |