- Previous Article
- CPAA Home
- This Issue
-
Next Article
Exponential return times in a zero-entropy process
Improving sharp Sobolev type inequalities by optimal remainder gradient norms
1. | Dipartimento di Matematica "U.Dini", Università di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy |
2. | Dipartimento di Matematica, Seconda Università di Napoli, Viale Lincoln 5, 81100 Caserta, Italy |
References:
[1] |
Proc. Amer. Math. Soc., 130 (2002), 489-505.
doi: 10.1090/S0002-9939-01-06132-9. |
[2] |
NoDEA Nonlinear Differential Equation Appl., 12 (2005), 243-263.
doi: 10.1007/S00030-005-0009-4. |
[3] |
Boll. Un. Mat. Ital., 5 (1977), 148-156. |
[4] |
Nonlinear Anal., 13 (1989), 185-220.
doi: 10.1016/0362-546X(89)90043-6. |
[5] |
Ric. Mat., 59 (2010), 265-280.
doi: 10.1007/s11587-010-0086-5. |
[6] |
J. Diff. Geom., 11 (1976), 573-598. |
[7] |
Indiana Univ. Math. J., 52 (2003), 171-190.
doi: 0.1512/iumj.2003.52.2207. |
[8] |
Trans. Amer. Math. Soc., 356 (2004), 2169-2196.
doi: 10.1090/S0002-9947-03-03389-0. |
[9] |
Math. Res. Lett., 15 (2008), 613-622. |
[10] |
Academic Press, Boston, 1988. |
[11] |
J. Funct. Anal., 62 (1985), 73-86.
doi: 10.1016/0022-1236(85)90020-5. |
[12] |
Ann. Sc. Norm. Super. Pisa, 25 (1997), 217-237. |
[13] |
J. Funct. Anal., 171 (2000), 177-191.
doi: 10.1006/jfan.1999.3504. |
[14] |
Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[15] |
Comm. Part. Diff. Eq., 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[16] |
J. Reine Angew. Math., 384 (1988), 419-431.
doi: 10.1515/crll.1988.384.153. |
[17] |
Indiana Univ. Math. J., 58 (2009), 1051-1096.
doi: 10.1512/iumj.2009.58.3561. |
[18] |
Math. Nachr., 280 (2007), 242-255.
doi: 0.1002/mana.200410478. |
[19] |
J. Fourier Anal. Appl., 4 (1998), 433-446.
doi: 10.1007/BF02498218. |
[20] |
Far East J. Math. Sci., 14 (2004), 333-359. |
[21] |
J. Funct. Anal., 216 (2004), 1-21.
doi: 10.1016/j.jfa.2003.09.010. |
[22] |
J. Funct. Anal., 170 (2000), 307-355.
doi: 10.1006/jfan.1999.3508. |
[23] |
Calc. Var. Partial Differential Equations, 25 (2006), 491-501.
doi: 10.1007/s00526-005-0353-6. |
[24] |
J. Math. Pures Appl., 87 (2007), 37-56.
doi: 10.1016/j.matpur.2006.10.007. |
[25] |
Trans. Amer. Math. Soc., 356 (2004), 2149-2168.
doi: 10.1090/S0002-9947-03-03395-6. |
[26] |
Proc. Natl. Acad. Sci. USA, 105 (2008), 13746-13751.
doi: 10.1073/pnas.0803703105. |
[27] |
Nonlinear Anal., 8 (1984), 289-299.
doi: 10.1016/0362-546X(84)90031-2. |
[28] |
Collect. Math., 57 (2006), 227-255. |
[29] |
Publ. Mat., 47 (2003), 311-358. |
[30] |
Math. Scand., 45 (1979), 77-102. |
[31] |
J. Funct. Anal., 189 (2002), 539-548. |
[32] |
Lecture Notes in Math. 1150, Springer-Verlag, Berlin-New York, 1985. |
[33] |
Springer-Verlag, Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-15564-2. |
[34] |
J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (): 1077.
|
[35] |
Duke Math. J., 30 (1963), 129-142.
doi: 10.1215/S0012-7094-63-03015-1. |
[36] |
Ann. Inst. Fourier, 16 (1966), 279-317.
doi: 10.5802/aif.232. |
[37] |
Doklady Conference, Section Math. Moscow Power Inst., (1965), 158-170 (Russian). Google Scholar |
[38] |
J. London Math. Soc., 54 (1996), 89-101. |
[39] |
Ann. Mat. Pura Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013. |
[40] |
J. Funct. Anal., 221 (2005), 482-495.
doi: 10.1016/j.jfa.2004.09.014. |
[41] |
J. Math. Mech., 17 (1967), 473-483. |
[42] |
Dokl. Akad. Nauk SSSR, 138 (1961), 805-808 (Russian); |
[43] |
J. Funct. Anal., 173 (2000), 103-153.
doi: 10.1006/jfan.1999.3556. |
show all references
References:
[1] |
Proc. Amer. Math. Soc., 130 (2002), 489-505.
doi: 10.1090/S0002-9939-01-06132-9. |
[2] |
NoDEA Nonlinear Differential Equation Appl., 12 (2005), 243-263.
doi: 10.1007/S00030-005-0009-4. |
[3] |
Boll. Un. Mat. Ital., 5 (1977), 148-156. |
[4] |
Nonlinear Anal., 13 (1989), 185-220.
doi: 10.1016/0362-546X(89)90043-6. |
[5] |
Ric. Mat., 59 (2010), 265-280.
doi: 10.1007/s11587-010-0086-5. |
[6] |
J. Diff. Geom., 11 (1976), 573-598. |
[7] |
Indiana Univ. Math. J., 52 (2003), 171-190.
doi: 0.1512/iumj.2003.52.2207. |
[8] |
Trans. Amer. Math. Soc., 356 (2004), 2169-2196.
doi: 10.1090/S0002-9947-03-03389-0. |
[9] |
Math. Res. Lett., 15 (2008), 613-622. |
[10] |
Academic Press, Boston, 1988. |
[11] |
J. Funct. Anal., 62 (1985), 73-86.
doi: 10.1016/0022-1236(85)90020-5. |
[12] |
Ann. Sc. Norm. Super. Pisa, 25 (1997), 217-237. |
[13] |
J. Funct. Anal., 171 (2000), 177-191.
doi: 10.1006/jfan.1999.3504. |
[14] |
Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[15] |
Comm. Part. Diff. Eq., 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[16] |
J. Reine Angew. Math., 384 (1988), 419-431.
doi: 10.1515/crll.1988.384.153. |
[17] |
Indiana Univ. Math. J., 58 (2009), 1051-1096.
doi: 10.1512/iumj.2009.58.3561. |
[18] |
Math. Nachr., 280 (2007), 242-255.
doi: 0.1002/mana.200410478. |
[19] |
J. Fourier Anal. Appl., 4 (1998), 433-446.
doi: 10.1007/BF02498218. |
[20] |
Far East J. Math. Sci., 14 (2004), 333-359. |
[21] |
J. Funct. Anal., 216 (2004), 1-21.
doi: 10.1016/j.jfa.2003.09.010. |
[22] |
J. Funct. Anal., 170 (2000), 307-355.
doi: 10.1006/jfan.1999.3508. |
[23] |
Calc. Var. Partial Differential Equations, 25 (2006), 491-501.
doi: 10.1007/s00526-005-0353-6. |
[24] |
J. Math. Pures Appl., 87 (2007), 37-56.
doi: 10.1016/j.matpur.2006.10.007. |
[25] |
Trans. Amer. Math. Soc., 356 (2004), 2149-2168.
doi: 10.1090/S0002-9947-03-03395-6. |
[26] |
Proc. Natl. Acad. Sci. USA, 105 (2008), 13746-13751.
doi: 10.1073/pnas.0803703105. |
[27] |
Nonlinear Anal., 8 (1984), 289-299.
doi: 10.1016/0362-546X(84)90031-2. |
[28] |
Collect. Math., 57 (2006), 227-255. |
[29] |
Publ. Mat., 47 (2003), 311-358. |
[30] |
Math. Scand., 45 (1979), 77-102. |
[31] |
J. Funct. Anal., 189 (2002), 539-548. |
[32] |
Lecture Notes in Math. 1150, Springer-Verlag, Berlin-New York, 1985. |
[33] |
Springer-Verlag, Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-15564-2. |
[34] |
J. Moser, A sharp form of an inequality by N. Trudinger,, Indiana Univ. Math. J., 20 (): 1077.
|
[35] |
Duke Math. J., 30 (1963), 129-142.
doi: 10.1215/S0012-7094-63-03015-1. |
[36] |
Ann. Inst. Fourier, 16 (1966), 279-317.
doi: 10.5802/aif.232. |
[37] |
Doklady Conference, Section Math. Moscow Power Inst., (1965), 158-170 (Russian). Google Scholar |
[38] |
J. London Math. Soc., 54 (1996), 89-101. |
[39] |
Ann. Mat. Pura Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013. |
[40] |
J. Funct. Anal., 221 (2005), 482-495.
doi: 10.1016/j.jfa.2004.09.014. |
[41] |
J. Math. Mech., 17 (1967), 473-483. |
[42] |
Dokl. Akad. Nauk SSSR, 138 (1961), 805-808 (Russian); |
[43] |
J. Funct. Anal., 173 (2000), 103-153.
doi: 10.1006/jfan.1999.3556. |
[1] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[2] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[3] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[4] |
Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069 |
[5] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[6] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022 |
[7] |
Krzysztof A. Krakowski, Luís Machado, Fátima Silva Leite. A unifying approach for rolling symmetric spaces. Journal of Geometric Mechanics, 2021, 13 (1) : 145-166. doi: 10.3934/jgm.2020016 |
[8] |
Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016 |
[9] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[10] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[11] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[12] |
K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038 |
[13] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[14] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[15] |
Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050 |
[16] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
[17] |
Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021028 |
[18] |
Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022 |
[19] |
José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005 |
[20] |
Andreas Neubauer. On Tikhonov-type regularization with approximated penalty terms. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021027 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]