\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On isolated vorticity regions beneath the water surface

Abstract Related Papers Cited by
  • We present a class of vorticity functions that will allow for isolated, circular vorticity regions in the background of still water, preceding the arrival of waves at the shoreline.
    Mathematics Subject Classification: Primary: 37E35; Secondary: 37E45, 76B15, 76B47.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Bryant, "Tsunami: The Underrated Hazard," Springer-Praxis books, Springer, Berlin, 2008.

    [2]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [3]

    A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res., 40 (2008), 175-211.doi: 10.1016/j.fluiddyn.2007.06.004.

    [4]

    A. Constantin and D. Henry, Solitons and tsunamis, Z. Naturforsch., 64a (2009), 65-68.

    [5]

    A. Constantin and R. S. Johnson, Addendum: Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res., 42 (2010), Art. No. 038901.doi: PMid:20419082, PMCid:2857605.

    [6]

    A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.

    [7]

    A. Constantin and E. Varvaruca, Steady periodic water waves with constant vorticity: regularity and local bifurcation, Arch. Rational Mech. Anal., 199 (2011), 33-67.doi: 10.1007/s00205-010-0314-x.

    [8]

    A. Constantin, A dynamical systems approach towards isolated vorticity regions for tsunami background states, Arch. Rational Mech. Anal., 200 (2011), 239-253.doi: 10.1007/s00205-010-0347-1.

    [9]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity\/, Ann. Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [10]

    M. Ehrnström and G. Villari, Linear water waves with vorticity: Rotational features and particle paths, J. Differential Equations, 244 (2008), 1888-1909.doi: 10.1016/j.jde.2008.01.012.

    [11]

    A. Geyer, On some background flows for tsunami waves\/, J. Math. Fluid. Mech., (2011), on-line.doi: 10.1007/s00021-011-0055-0.

    [12]

    J. Ko and W. Strauss, Effect of vorticity on steady water waves, J. Fluid Mech., 608 (2008), 197-215.doi: 10.1017/S0022112008002371.

    [13]

    H. Segur, Waves in shallow water, with emphasis on the tsunami of 2004, in "Tsunami and Nonlinear Waves" (ed. A. Kundu), Springer, (2007), 3-29.

    [14]

    H. Segur, Integrable models of waves in shallow water, in "Probability, Geometry and Integrable Systems" (ed. M. Pinsky et al.), Cambridge University Press, (2008), 345-371.

    [15]

    R. Stuhlmeier, KdV theory and the Chilean tsunami of 1960, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 623-632.doi: 10.3934/dcdsb.2009.12.623.

    [16]

    C. Swan, I. Cummins and R. James, An experimental study of two-dimensional surface water waves propagating on depth-varying currents, J. Fluid Mech., 428 (2001), 273-304.doi: 10.1017/S0022112000002457.

    [17]

    G. Thomas and G. Klopman, Wave-current interactions in the nearshore region. Gravity waves in water of finite depth, in "Advances in Fluid Mechanics," 10. WIT (Wessex Institute of Technology) (1997), Southhampton, UK, 215-319.

    [18]

    J. F. Tolland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48.

    [19]

    E. Wahlén, Steady water waves with a critical layer, J. Differential Equations, 246 (2009), 2468-2483.doi: 10.1016/j.jde.2008.10.005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(47) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return