\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On particle trajectories in linear deep-water waves

Abstract Related Papers Cited by
  • We determine the phase portrait of a Hamiltonian system of equations describing the motion of the particles in linear deep-water waves. The particles experience in each period a forward drift which decreases with greater depth.
    Mathematics Subject Classification: Primary: 76B15, 34C25; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. J. Acheson, "Elementary Fluid Dynamics," The Clarendon Press, Oxford Univ. Press, New York, 1990.

    [2]

    A. Constantin, On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.doi: 10.1088/0305-4470/34/7/313.

    [3]

    A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731.doi: 10.1088/0305-4470/34/45/311.

    [4]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [5]

    A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train, Eur. J. Mech. B Fluids, 30 (2011), 12-16.doi: 10.1016/j.euromechflu.2010.09.008.

    [6]

    A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.doi: 10.1017/S0022112003006773.

    [7]

    A. Constantin and J. Escher, Symmetry of steady deep-water waves with vorticity, European J. Appl. Math., 15 (2004), 755-768.doi: 10.1017/S0956792504005777.

    [8]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [9]

    A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.doi: 10.1002/cpa.20165.

    [10]

    A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.doi: 10.1002/cpa.3046.

    [11]

    A. Constantin, D. Sattinger and W. Strauss, Variational formulations for steady water waves with vorticity, J. Fluid Mech., 548 (2006), 151-163.doi: 10.1017/S0022112005007469.

    [12]

    A. Constantin and G. Villari, Particle trajectories in linear water waves, J. Math. Fluid Mech., 10 (2008), 1-18.doi: 10.1007/s00021-005-0214-2.

    [13]

    A. Constantin, M. Ehrnström and G. Villari, Particle trajectories in linear deep-water waves, Nonlinear Anal. Real World Appl., 9 (2008), 1336-1344.doi: 10.1016/j.nonrwa.2007.03.003.

    [14]

    A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.doi: 10.1215/S0012-7094-07-14034-1.

    [15]

    G. D. Crapper, "Introduction to Water Waves," Ellis Horwood Ltd., Chichester, 1984.

    [16]

    L. Debnath, "Nonlinear Water Waves," Academic Press, Inc., Boston, MA, 1994.

    [17]

    F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445.

    [18]

    D. Henry, The trajectories of particles in deep-water Stokes waves, Int. Math. Res. Not., Art. ID 23405 (2006), 1-13.doi: 10.1155/IMRN/2006/21630.

    [19]

    D. Henry, Particle trajectories in linear periodic capillary and capillary-gravity deep-water waves, J. Nonlinear Math. Phys., 14 (2007), 1-7.doi: 10.2991/jnmp.2007.14.1.1.

    [20]

    D. Henry, On Gerstner's water wave, J. Nonlinear Math. Phys., 15 (2008), 87-95.doi: 10.2991/jnmp.2008.15.s2.7.

    [21]

    V. Hur, Global bifurcation theory of deep-water waves with vorticity, SIAM J. Math. Anal., 37 (2006), 1482-1521.doi: 10.1137/040621168.

    [22]

    D. Ionescu-Kruse, Particle trajectories in linearized irrotational shallow water flows, J. Nonlinear Math. Phys., 15 (2008), 13-27.doi: 10.2991/jnmp.2008.15.s2.2.

    [23]

    R. S. Johnson, "A Modern Introduction to the Mathematical Theory of Water Waves," Cambridge Univ. Press, Cambridge, 1997.doi: 10.1017/CBO9780511624056.

    [24]

    J. Lamb, "Hydrodynamics," Cambridge Univ. Press, Cambridge, 1895.

    [25]

    J. Lighthill, "Waves in Fluids," Cambridge Univ. Press, Cambridge, 1978.

    [26]

    A. V. Matioc, On particle trajectories in linear water waves, Nonlinear Anal. Real World Appl., 11 (2010), 4275-4284.doi: 10.1016/j.nonrwa.2010.05.014.

    [27]

    B. V. MatiocOn the regularity of deep-water waves with general vorticity distributions, to appear in Quart. Appl. Math..

    [28]

    L. M. Milne-Thomson, "Theoretical Hydrodynamics," The Macmillan Co., London, 1938.

    [29]

    A. Sommerfeld, "Mechanics of Deformable Bodies," Academic Press, Inc., Boston, MA, 1950.

    [30]

    J. J. Stoker, "Water Waves. The Mathematical Theory with Applications," Interscience Publ. Inc., New York, 1957.

    [31]

    G. G. Stokes, On the theory of oscillatory waves, Trans. Cambridge Phil. Soc., 8 (1847), 441-455.

    [32]

    A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech., 195 (1988), 281-302.doi: 10.1017/S0022112088002423.

    [33]

    J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48.

    [34]

    C. S. Yih, The role of drift mass in the kinetic energy and momentum of periodic water waves and sound waves, J. Fluid Mech, 331 (1997), 429-438.doi: 10.1017/S0022112096003539.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return