-
Previous Article
On the symmetry of steady periodic water waves with stagnation points
- CPAA Home
- This Issue
-
Next Article
Effects of shear flow on KdV balance - applications to tsunami
The 2-component dispersionless Burgers equation arising in the modelling of blood flow
1. | School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland |
References:
[1] |
D. J. Acheson, "Elementary Fluid Dynamics," Oxford University Press, Oxford, 1990. |
[2] |
M. Aniker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries. Part I: derivation and properties of mathematical model,, Zeitschrift f\, 22 (): 217.
|
[3] |
M. Aniker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries. Part II: parametric study related to clinical problems,, Zeitschrift f\, 22 (): 563.
|
[4] |
F. Bauer and J. A. Nohel, "The Qualitative Theory of Ordinary Differential Equations: An Introduction," W.A Benjamin, New York, 1969. |
[5] |
R. Beals, D. Sattinger and J. Szmigielski, Accoustic scattering and the extended KdV hierachy, Adv. Math., 140 (1998), 190-206.
doi: doi: 10.1005/aima.1998.1768. |
[6] |
A Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschi, Long-time asymptotics for teh Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588.
doi: doi: 10.1137/090748500. |
[7] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: doi: 10.1103/PhysRevLett.71.1661. |
[8] |
M. Chen, S.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15; nlin.SI/0501028. |
[9] |
R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system, International Mathematics Research Notices, Article ID rnq118 (2010), 36 pages.
doi: doi10.1093/imrn/rnq118. |
[10] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shalow water equation, Acta. Math., 181 (1998), 229-243.
doi: doi: 10.1007/BF02392586. |
[11] |
A. Constantin, V. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa -Holm equation, Inverse Problems, 22 (2006), 2197-2207.
doi: doi: 10.1088/0266-5611/22/6/017. |
[12] |
A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.
doi: doi: 10.1016/j.physleta.2008.10.050. |
[13] |
A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam Res., 40 (2008), 175-211. |
[14] |
A. Constantin and D. Lannes, The hydro-dynamical relevance of teh Camassa-Holm and Degasperis-Proceisi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186. |
[15] |
A. Constantin and H. P. McKean, A shallow water equation on the circle, Commun. Pure Appl. Math., 52 (1999), 949-982. |
[16] |
A. Constantin and W. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (): 140.
|
[17] |
H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta. Math., 127 (1998), 193-207. |
[18] |
J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513. |
[19] |
J. Escher and Z. Yin, Well-posedness, blow-up phenomena and global solutions for the b-equation, J. Reine Angew. Math., 624 (2008), 51-80.
doi: doi: 10.1515/CRELLE.2008.080. |
[20] |
G. Falqui, On a Camassa-Holm type equation with two dependent variables, J. Phys. A, 39 (2006), 327-342.
doi: doi: 10.1088/0305-4470/39/2/004. |
[21] |
G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.
doi: doi: 10.1016/j.jfa.2010.02.008. |
[22] |
D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009) 597-606.
doi: doi: 10.3934/dcdsb.2009.12.597. |
[23] |
D. D. Holm and C. Tronci, Geodesic Vlasov equations and their integrable moment closures, J. Geom. Mech., 1 (2009), 181-208. |
[24] |
D. D. Holm and R. I. Ivanov, Two-component CH system: inverse scattering, peakons and geometry, Inverse Problems, 27 (2011), 045013.
doi: doi: 10.1088/0266-5611/27/4/045013. |
[25] |
R. I. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Z. Naturforsch., 61a (2006), 133-138; nlin.SI/0601066. |
[26] |
R. I. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389-396. |
[27] |
R. S. Johnson, Camassa-Holm, Kortweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: doi: 10.1017/S0022112001007224. |
[28] |
J. Keener and J. Sneyd, "Mathematical Physiology 1: Cellular Physiology," Springer, 2009. |
[29] |
Y. Kodama and B. Konopelchenko, Singular sector of the Burgers-Hopf hierarchy and deformations of hyperelliptic curves, J. Phys. A: Math. Gen., 35 (2002), L489-L500. |
[30] |
J. Lighthill, "Mathematical Biofluiddynamics," SIAM, Philadelphia, PA. 1975. |
[31] |
S.-Q. Liu and Y. Zhang, Deformations of semisimple bi-Hamiltonian structures of hydrodynamic type, J. Geom. Phys., 54 (2005), 427-53.
doi: 10.1088/0305-4470/35/31/104. |
[32] |
P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[33] |
T. J. Pedley, Blood flow in arteries and veins, in "Perspectives in Fluid Dynamics," Cambridge University Press, 2003. |
[34] |
W. A. Strauss, "Partial Differential Equations: An Introduction," John Wiley & Sons Inc., 1990. |
[35] |
G. B Whitham, "Linear and Nonlinear Waves," John Wiley & Sons, New York, 1980. |
show all references
References:
[1] |
D. J. Acheson, "Elementary Fluid Dynamics," Oxford University Press, Oxford, 1990. |
[2] |
M. Aniker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries. Part I: derivation and properties of mathematical model,, Zeitschrift f\, 22 (): 217.
|
[3] |
M. Aniker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries. Part II: parametric study related to clinical problems,, Zeitschrift f\, 22 (): 563.
|
[4] |
F. Bauer and J. A. Nohel, "The Qualitative Theory of Ordinary Differential Equations: An Introduction," W.A Benjamin, New York, 1969. |
[5] |
R. Beals, D. Sattinger and J. Szmigielski, Accoustic scattering and the extended KdV hierachy, Adv. Math., 140 (1998), 190-206.
doi: doi: 10.1005/aima.1998.1768. |
[6] |
A Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschi, Long-time asymptotics for teh Camassa-Holm equation, SIAM J. Math. Anal., 41 (2009), 1559-1588.
doi: doi: 10.1137/090748500. |
[7] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: doi: 10.1103/PhysRevLett.71.1661. |
[8] |
M. Chen, S.-Q. Liu and Y. Zhang, A two-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15; nlin.SI/0501028. |
[9] |
R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system, International Mathematics Research Notices, Article ID rnq118 (2010), 36 pages.
doi: doi10.1093/imrn/rnq118. |
[10] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shalow water equation, Acta. Math., 181 (1998), 229-243.
doi: doi: 10.1007/BF02392586. |
[11] |
A. Constantin, V. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa -Holm equation, Inverse Problems, 22 (2006), 2197-2207.
doi: doi: 10.1088/0266-5611/22/6/017. |
[12] |
A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.
doi: doi: 10.1016/j.physleta.2008.10.050. |
[13] |
A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam Res., 40 (2008), 175-211. |
[14] |
A. Constantin and D. Lannes, The hydro-dynamical relevance of teh Camassa-Holm and Degasperis-Proceisi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186. |
[15] |
A. Constantin and H. P. McKean, A shallow water equation on the circle, Commun. Pure Appl. Math., 52 (1999), 949-982. |
[16] |
A. Constantin and W. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (): 140.
|
[17] |
H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta. Math., 127 (1998), 193-207. |
[18] |
J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation, Discrete Contin. Dyn. Syst., 19 (2007), 493-513. |
[19] |
J. Escher and Z. Yin, Well-posedness, blow-up phenomena and global solutions for the b-equation, J. Reine Angew. Math., 624 (2008), 51-80.
doi: doi: 10.1515/CRELLE.2008.080. |
[20] |
G. Falqui, On a Camassa-Holm type equation with two dependent variables, J. Phys. A, 39 (2006), 327-342.
doi: doi: 10.1088/0305-4470/39/2/004. |
[21] |
G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.
doi: doi: 10.1016/j.jfa.2010.02.008. |
[22] |
D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009) 597-606.
doi: doi: 10.3934/dcdsb.2009.12.597. |
[23] |
D. D. Holm and C. Tronci, Geodesic Vlasov equations and their integrable moment closures, J. Geom. Mech., 1 (2009), 181-208. |
[24] |
D. D. Holm and R. I. Ivanov, Two-component CH system: inverse scattering, peakons and geometry, Inverse Problems, 27 (2011), 045013.
doi: doi: 10.1088/0266-5611/27/4/045013. |
[25] |
R. I. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Z. Naturforsch., 61a (2006), 133-138; nlin.SI/0601066. |
[26] |
R. I. Ivanov, Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389-396. |
[27] |
R. S. Johnson, Camassa-Holm, Kortweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
doi: doi: 10.1017/S0022112001007224. |
[28] |
J. Keener and J. Sneyd, "Mathematical Physiology 1: Cellular Physiology," Springer, 2009. |
[29] |
Y. Kodama and B. Konopelchenko, Singular sector of the Burgers-Hopf hierarchy and deformations of hyperelliptic curves, J. Phys. A: Math. Gen., 35 (2002), L489-L500. |
[30] |
J. Lighthill, "Mathematical Biofluiddynamics," SIAM, Philadelphia, PA. 1975. |
[31] |
S.-Q. Liu and Y. Zhang, Deformations of semisimple bi-Hamiltonian structures of hydrodynamic type, J. Geom. Phys., 54 (2005), 427-53.
doi: 10.1088/0305-4470/35/31/104. |
[32] |
P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[33] |
T. J. Pedley, Blood flow in arteries and veins, in "Perspectives in Fluid Dynamics," Cambridge University Press, 2003. |
[34] |
W. A. Strauss, "Partial Differential Equations: An Introduction," John Wiley & Sons Inc., 1990. |
[35] |
G. B Whitham, "Linear and Nonlinear Waves," John Wiley & Sons, New York, 1980. |
[1] |
Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607 |
[2] |
Angelo Morro. Nonlinear waves in thermoelastic dielectrics. Evolution Equations and Control Theory, 2019, 8 (1) : 149-162. doi: 10.3934/eect.2019009 |
[3] |
Qinglong Zhang. Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3235-3258. doi: 10.3934/cpaa.2021104 |
[4] |
Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313 |
[5] |
Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010 |
[6] |
Yuri Gaididei, Anders Rønne Rasmussen, Peter Leth Christiansen, Mads Peter Sørensen. Oscillating nonlinear acoustic shock waves. Evolution Equations and Control Theory, 2016, 5 (3) : 367-381. doi: 10.3934/eect.2016009 |
[7] |
Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161 |
[8] |
Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108 |
[9] |
John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001 |
[10] |
Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23 |
[11] |
Anna Geyer, Ronald Quirchmayr. Weakly nonlinear waves in stratified shear flows. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2309-2325. doi: 10.3934/cpaa.2022061 |
[12] |
David Henry. Energy considerations for nonlinear equatorial water waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2337-2356. doi: 10.3934/cpaa.2022057 |
[13] |
Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793 |
[14] |
Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i |
[15] |
Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933 |
[16] |
Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231 |
[17] |
Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028 |
[18] |
Wenzhang Huang. Weakly coupled traveling waves for a model of growth and competition in a flow reactor. Mathematical Biosciences & Engineering, 2006, 3 (1) : 79-87. doi: 10.3934/mbe.2006.3.79 |
[19] |
Bogdan-Vasile Matioc. A characterization of the symmetric steady water waves in terms of the underlying flow. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3125-3133. doi: 10.3934/dcds.2014.34.3125 |
[20] |
Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]