\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions

Abstract Related Papers Cited by
  • We show that Caffarelli-Kohn-Nirenberg first order interpolation inequalities as well as weighted trace inequalities in $\mathbb{R}^n \times \mathbb{R}_+$ admit a better range of power weights if we restrict ourselves to the space of radially symmetric functions.
    Mathematics Subject Classification: Primary: 26D10, 46E35; Secondary: 47G10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. F. Bonder and J. Dolbeault, work in progress .

    [2]

    L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275.

    [3]

    F. Catrina and Z-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.

    [4]

    P. L. De Nápoli, I. Drelichman and R. G. DuránOn weighted inequalities for fractional integrals of radial functions, To appear in Illinois J. Math. arXiv:0910.5508.

    [5]

    L. Grafakos, "Classical and Modern Fourier Analysis," Pearson Education, Inc., Upper Saddle River, NJ, 2004.

    [6]

    E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.doi: 10.2307/2007032.

    [7]

    E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.

    [8]

    E. M. Stein and G. Weiss, Fractional integrals on $n$-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return