Citation: |
[1] |
J. Bergh and J. Löfström, "Interpolation Spaces, An Introduction," Springer-Verlag, New York, 1976. |
[2] |
M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Revista Matem$\acutea$tica Iberoamericana, 13 (1997), 515-541. |
[3] |
M. Cannone, C. X. Miao, N. Prioux and B. Q. Yuan, The Cauchy problem for the Magneto-hydrodynamic system, self-similar solutions of nonlinear PDE, Banach Center Publications, Institue of Mathematics, Polish Academy of Scuences, Warszawa, 74 (2006), 59-93. |
[4] |
C. Cao and J. Wu, Two regularity criteria for the 3D MHD equation, J. Differential Equations, 248 (2010), 2263-2274.doi: 10.1016/j.jde.2009.09.020. |
[5] |
S. Cui and C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s(R^n)$ and applications, Nonlinear Analysis, 67 (2007), 687-707.doi: 10.1016/j.na.2006.06.020. |
[6] |
H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Archive for Rational Mechanics and Analysis, 16 (1964), 269-315.doi: 10.1007/BF00276188. |
[7] |
Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212. |
[8] |
Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier Stokes equations with nondecaying initial data, Quaderni di Matematica, 3 (1999), 28-68. |
[9] |
Y. Giga and T. Miyakwa, Solutions in $L_r$ of the Navier-Stokes initial value problem, Archive for Rational Mechanics and Analysis, 89 (1985), 267-281.doi: 10.1007/BF00276875. |
[10] |
Y. Giga and O. Sawada, On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear Anal. Real World Appl., 1 (2003), 549-562. |
[11] |
C. Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 33 (1969), 386-405.doi: 10.1007/BF00247697. |
[12] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equations in $\mathbfR^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.doi: 10.1007/BF01174182. |
[13] |
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.doi: 10.1002/cpa.3160410704. |
[14] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Kortweg-de Vries equation via contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.doi: 10.1002/cpa.3160460405. |
[15] |
H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.doi: 10.1006/aima.2000.1937. |
[16] |
H. Kozono and M. Yamazaki, Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data, Comm. Part. Diff. Equ., 19 (1994), 959-1014.doi: 10.1080/03605309408821042. |
[17] |
P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Chapman and Hall/CRC, 2002. |
[18] |
Y. Meyer, Wavelets, paraproducts and Navier-Stokes equations, in "Current Developments in Mathematics (1996)," Cambridge, MA, Int. Press, Boston, MA, (1997), 105-212. |
[19] |
C. Miao, B. Yuan and B. Zhang, Well-posedness for the incompressible magneto-hydrodynamic system, Math. Meth. Appl. Sci., 30 (2007), 961-976.doi: 10.1002/mma.820. |
[20] |
C. Miao and B. Yuan, On well-posedness of the Cauchy problem for MHD system in Besov spaces, Math. Meth. Appl. Sci., 32 (2009), 53-76.doi: 10.1002/mma.1026. |
[21] |
H. Miura and O. Sawada, On the regularizing rate estimates of Koch-Tataru's solution to the Navier-Stokes equations, Asymptotic Analysis, 49 (2006), 1-15. |
[22] |
M. Sermang and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.doi: 10.1002/cpa.3160360506. |
[23] |
O. Sawada, On analyticity rate estimates of the solutions to the Navier-Stokes equations in Bessel-potential spaces, J. Math. Anal. Appl., 312 (2005), 1-13.doi: 10.1016/j.jmaa.2004.06.068. |
[24] |
J. Wu, Regularity results for weak solutions of the 3D MHD equations, Discrete Contin. Dyn. Syst., 10 (2004), 543-556.doi: 10.3934/dcds.2004.10.543. |
[25] |
J. Wu, Bounds and new approaches for the 3D MHD equations, J. Nonlinear Sci., 12 (2002), 395-413.doi: 10.1007/s00332-002-0486-0. |