Citation: |
[1] |
F. Ammar Khodja and A. Benabdallah, Sufficient conditions for uniform stabilization of second order equations by dynamical controllers, Dyn. Contin. Discrete Impulsive Syst., 7 (2000), 207-222. |
[2] |
K. Ammari, S. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay, preprint, arXiv:math/1005.2547v1. |
[3] |
G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Instit. Mat. Univ. Trieste Suppl., 28 (1997), 1-28. |
[4] |
A. Bátkai and S. Piazzera, "Semigroups for Delay Equations,'' Research Notes in Mathematics, 10, A.K. Peters, Wellesley MA, 2005. |
[5] |
D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl. Mech. Rev., 51 (1998), 705-729.doi: 10.1115/1.3098984. |
[6] |
R. Denk and R. Racke, $L^p$ resolvent estimates and time decay for generalized thermoelastic plate equations, Electronic J. Differential Equations, 48 (2006), 1-16. |
[7] |
R. Denk, R. Racke and Y. Shibata, $L_p$ theory for the linear thermoelastic plate equations in bounded and exterior domains, Advances Differential Equations, 14 (2009), 685-715. |
[8] |
R. Denk, R. Racke and Y. Shibata, Local energy decay estimate of solutions to the thermoelastic plate equations in two- and three-dimensional exterior domains, J. Analysis Appl., 29 (2010), 21-62. |
[9] |
M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Appl. Math. Letters, 22 (2009), 1374-1379.doi: 10.1016/j.aml.2009.03.010. |
[10] |
E. Fridman, S. Nicaise and J. Valein, Stabilization of second order evoluion equations with unbounded feedback with time-dependent delay, SIAM J. Control Optim., 48 (2010), 5028-5052.doi: 10.1137/090762105. |
[11] |
S. Jiang and R. Racke, "Evolution Equations in Thermoelasticity,'' $\pi$ Monographs Surveys Pure Appl. Math. 112, Chapman & Hall/CRC, Boca Raton, 2000. |
[12] |
P. M. Jordan, W. Dai and R. E. Mickens, A note on the delayed heat equation: Instability with respect to initial data, Mech. Research Comm., 35 (2008), 414-420.doi: 10.1016/j.mechrescom.2008.04.001. |
[13] |
J. U. Kim, On th energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.doi: 10.1137/0523047. |
[14] |
M. Kirane, B. Said-Houari and M. N. Anwar, Stability result for the Timoshenko systme with a time-varying delay term in the internal feedbacks, Comm. Pure Appl. Anal., 10 (2011), 667-686.doi: 10.3934/cpaa.2011.10.667. |
[15] |
J. Lagnese, "Boundary Stabilization of Thin Plates,'' SIAM Studies Appl. Math., 10, SIAM, Philadelphia, 1989. |
[16] |
I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the S.C. semigroup arising in abstract thermoelastic equations, Adv. Differential Equations, 3 (1998), 387-416. |
[17] |
I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, ESAIM, Proc., 4 (1998), 199-222. |
[18] |
I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann boundary conditions, Abstract Appl. Anal., 3 (1998), 153-169.doi: 10.1155/S1085337598000487. |
[19] |
I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Annali Scuola Norm. Sup. Pisa, 27 (1998), 457-482. |
[20] |
Z. Liu and M. Renardy, A note on the equation of a thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.doi: 10.1016/0893-9659(95)00020-Q. |
[21] |
K. Liu and Z. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. angew. Math. Phys., 48 (1997), 885-904.doi: 10.1007/s000330050071. |
[22] |
Z. Liu and J. Yong, Qualitative properties of certain $C_0$ semigroups arising in elastic systems with various dampings, Adv. Differential Equations, 3 (1998), 643-686. |
[23] |
Z. Liu and S. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math., 53 (1997), 551-564. |
[24] |
Z. Liu and S. Zheng, "Semigroups Associated with Dissipative Systems,'' $\pi$ Research Notes Math., 398, Chapman & Hall/ CRC, Boca Raton, 1999. |
[25] |
J. E. Muñoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563.doi: 10.1137/S0036142993255058. |
[26] |
J.E. Muñoz Rivera and R. Racke, Large solutions and smoothing properties for nonlinear thermoelastic systems, J. Differential Equations, 127 (1996), 454-483.doi: 10.1006/jdeq.1996.0078. |
[27] |
S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.doi: 10.1137/060648891. |
[28] |
S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary of internal distributed delay, Diff. Integral Equations, 21 (2008), 935-958. |
[29] |
J. Prüß, "Evolutionary Integral Equations and Applications,'' Monographs Math., 87, Birkhäuser, Basel, 1993. |
[30] |
R. Quintanilla, A well posed problem for the dual-phase-lag heat conduction, J. Thermal Stresses, 31 (2008), 260-269.doi: 10.1080/01495730701738272. |
[31] |
R. Quintanilla, A well posed problem for the three dual-phase-lag heat conduction, J. Thermal Stresses, 32 (2009), 1270-1278.doi: 10.1080/01495730903310599. |
[32] |
R. Quintanilla, Some solutions for a family of exact phase-lag heat conduction problems, Mech. Research Communications, 38 (2011), 355-360.doi: 10.1016/j.mechrescom.2011.04.008. |
[33] |
R. Racke, Thermoelasticity with second sound -- exponential stability in linear and nonlinear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441.doi: 10.1002/mma.298. |
[34] |
R. Racke, Asymptotic behavior of solutions in linear 2- or 3-d thermoelasticity with second sound, Quart. Appl. Math., 61 (2003), 315-328. |
[35] |
R. Racke, "Thermoelasticity,'' Chapter in: Handbook of Differential Equations. Evolutionary Equations, Vol. 5. Eds.: C.M. Dafermos, M. Pokorn\'y, Elsevier B.V., Amsterdam, 2009. |
[36] |
D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339-358.doi: 10.1006/jmaa.1993.1071. |
[37] |
B. Said-Houari and Y. Laskri, A stability result of a Timoshenko system with a delay term in the internal feedback, Appl. Math. Comp., 217 (2010), 2857-2869.doi: 10.1006/jmaa.1993.1071. |