September  2012, 11(5): 1859-1874. doi: 10.3934/cpaa.2012.11.1859

On a singular Hamiltonian elliptic systems involving critical growth in dimension two

1. 

Departamento de Matem, Brazil

Received  March 2011 Revised  December 2011 Published  March 2012

In this paper we study the existence of nontrivial solutions for the strongly indefinite elliptic system \begin{eqnarray*} -\Delta u + b(x) u = \frac{g(v)}{|x|^\alpha}, v > 0 in R^2, \\ -\Delta v + b(x) v = \frac{f(u)}{|x|^\beta}, u > 0 in R^2, \end{eqnarray*} where $\alpha, \beta \in [0,2)$, $b: \mathbb{R}^2\rightarrow \mathbb{R}$ is a continuous positive potential bounded away from zero and which can be ``large" at the infinity and the functions $f: \mathbb{R}\rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ behaves like $\exp(\gamma s^2)$ when $|s|\rightarrow+\infty$ for some $\gamma >0$.
Citation: Manassés de Souza. On a singular Hamiltonian elliptic systems involving critical growth in dimension two. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1859-1874. doi: 10.3934/cpaa.2012.11.1859
References:
[1]

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393-413.

[2]

Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603.

[3]

H. Berestycki and P. -L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.

[4]

D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Comm. Partial Differential Equations, 17 (1992), 407-435.

[5]

D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana Univ. Math. J., 53 (2004), 1037-1054.

[6]

D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 97-116.

[7]

D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.

[8]

M. de Souza and J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications, Mathematische Nachrichten, 284 (2011), 1754-1776.

[9]

Y. Ding and S. Li, Existence of entire solutions for some elliptic systems, Bulletin of the Australian Mathematical Society, 50 (1994), 501-519.

[10]

J. M. do Ó, Liliane A. Maia and Elves A. B. Silva, Standing wave solutions for system of Schrodinger equations in $\mathbb{R}^2$ involving critical growth, to appear.

[11]

J. M. do Ó, E. Medeiros and U. B. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008) 286-304

[12]

J. Giacomoni and K. Sreenadh, A multiplicity result to a nonhomogeneous elliptic equation in whole space $\mathbb{R}^2$, Adv. Math. Sci. Appl., 15 (2005), 467-488.

[13]

J. Hulshot, E. Mitidieri and R. Van der Vorst, Strongly indefinite systems with critical Sobolev exponents, Trans. Amer. Math. Soc., 350 (1998), 2349-2365.

[14]

V. Kondrat'ev and M. Shubin, Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry, Operator Theory: Advances and Applications, 110 (1999), 185-226.

[15]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Regional Conf. Ser. in Math., 65, AMS, Providence, RI, 1986.

[17]

N. S. Trudinger, On the embedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484.

[18]

G. Zhang and S. Liu, Existence result for a class of elliptic systems with indefinite weights in $\mathbb{R}^2$, Bound. Value Probl., 2008, Art. ID 217636, 10 pp.

show all references

References:
[1]

Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393-413.

[2]

Adimurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603.

[3]

H. Berestycki and P. -L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.

[4]

D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Comm. Partial Differential Equations, 17 (1992), 407-435.

[5]

D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana Univ. Math. J., 53 (2004), 1037-1054.

[6]

D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 97-116.

[7]

D. G. de Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.

[8]

M. de Souza and J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications, Mathematische Nachrichten, 284 (2011), 1754-1776.

[9]

Y. Ding and S. Li, Existence of entire solutions for some elliptic systems, Bulletin of the Australian Mathematical Society, 50 (1994), 501-519.

[10]

J. M. do Ó, Liliane A. Maia and Elves A. B. Silva, Standing wave solutions for system of Schrodinger equations in $\mathbb{R}^2$ involving critical growth, to appear.

[11]

J. M. do Ó, E. Medeiros and U. B. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008) 286-304

[12]

J. Giacomoni and K. Sreenadh, A multiplicity result to a nonhomogeneous elliptic equation in whole space $\mathbb{R}^2$, Adv. Math. Sci. Appl., 15 (2005), 467-488.

[13]

J. Hulshot, E. Mitidieri and R. Van der Vorst, Strongly indefinite systems with critical Sobolev exponents, Trans. Amer. Math. Soc., 350 (1998), 2349-2365.

[14]

V. Kondrat'ev and M. Shubin, Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry, Operator Theory: Advances and Applications, 110 (1999), 185-226.

[15]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.

[16]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Regional Conf. Ser. in Math., 65, AMS, Providence, RI, 1986.

[17]

N. S. Trudinger, On the embedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484.

[18]

G. Zhang and S. Liu, Existence result for a class of elliptic systems with indefinite weights in $\mathbb{R}^2$, Bound. Value Probl., 2008, Art. ID 217636, 10 pp.

[1]

Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455

[2]

Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378

[3]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[4]

Shengbing Deng, Xingliang Tian. On a nonhomogeneous Kirchhoff type elliptic system with the singular Trudinger-Moser growth. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022071

[5]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[6]

Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure and Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006

[7]

Sami Aouaoui, Rahma Jlel. Singular weighted sharp Trudinger-Moser inequalities defined on $ \mathbb{R}^N $ and applications to elliptic nonlinear equations. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 781-813. doi: 10.3934/dcds.2021137

[8]

Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461

[9]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[10]

Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031

[11]

Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943

[12]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[13]

Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure and Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327

[14]

Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 4215-4228. doi: 10.3934/era.2021080

[15]

Dongsheng Kang. Quasilinear systems involving multiple critical exponents and potentials. Communications on Pure and Applied Analysis, 2013, 12 (2) : 695-710. doi: 10.3934/cpaa.2013.12.695

[16]

Dongsheng Kang, Fen Yang. Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4247-4263. doi: 10.3934/dcds.2012.32.4247

[17]

Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155

[18]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[19]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[20]

Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]