-
Previous Article
Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients
- CPAA Home
- This Issue
-
Next Article
On a singular Hamiltonian elliptic systems involving critical growth in dimension two
Elliptic equations having a singular quadratic gradient term and a changing sign datum
1. | Dip. Metodi e Modelli Matematici per le Scienze Applicate, Univ. Roma 1, Via Antonio Scarpa 16, 00161 Roma |
2. | Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza, Università di Roma, Via Scarpa 16, 00161 Roma, Italy |
3. | Departament d'An, Spain |
References:
[1] |
B. Abdellaoui, D. Giachetti, I. Peral and M. Walias, Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary, Nonlinear Analysis, 74 (2011), 1355-1371. |
[2] |
D. Arcoya, S. Barile and P. J. Martínez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition, J. Math. Anal. Appl., 350 (2009), 401-408.
doi: 10.1016/j.jmaa.2008.09.073. |
[3] |
D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms, J. Differential Equations, 249 (2010), 2771-2795.
doi: 10.1016/j.jde.2010.05.009. |
[4] |
D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations, 246 (2009), 4006-4042.
doi: 10.1016/j.jde.2009.01.016. |
[5] |
D. Arcoya, J. Carmona and P. J. Martínez-Aparicio, Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms, Adv. Nonlinear Stud., 7 (2007), 299-317. |
[6] |
D. Arcoya and P. J. Martínez-Aparicio, Quasilinear equations with natural growth, Rev. Mat. Iberoamericana, 24 (2008), 597-616.
doi: 10.4171/RMI/548. |
[7] |
D. Arcoya and S. Segura de León, Uniqueness of solutions for some elliptic equations with a quadratic gradient term, ESAIM: Control, Optimization and the Calculus of Variations, 16 (2010), 327-336.
doi: 10.1051/cocv:2008072. |
[8] |
L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calc. Var., 14 (2008), 411-426.
doi: 10.1051/cocv:2008031. |
[9] |
L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data, Nonlinear Anal., 19 (1992), 573-579.
doi: 10.1016/0362-546X(92)90022-7. |
[10] |
L. Boccardo, T. Leonori, L. Orsina and F. Petitta, Quasilinear elliptic equations with singular quadratic growth terms, Comm. Contemp. Math., 13 (2011), 607-642.
doi: 10.1142/S0219199711004300. |
[11] |
L. Boccardo, F. Murat and J. P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugal. Math., 41 (1982), 507-534. |
[12] |
L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 213-235. |
[13] |
L. Boccardo, F. Murat and J. P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183-196.
doi: 10.1007/BF01766148. |
[14] |
L. Boccardo, S. Segura de León and C. Trombetti, Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term, J. Math. Pures Appl., 80 (2001), 919-940.
doi: 10.1016/S0021-7824(01)01211-9. |
[15] |
F. E. Browder, Existence theorems for nonlinear partial differential equations, "Global Analysis" (Proc. Sympos. Pre Math., vol XVI, Berkeley, California, 1968), |
[16] |
D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behaviour, Boll. Unione Mat. Ital., 2 (2009), 349-370. |
[17] |
D. Giachetti and S. Segura de León, Quasilinear stationary problems with a quadratic gradient term having singularities,, J. London Math. Soc., ().
|
[18] |
A. Porretta and S. Segura de León, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492.
doi: 10.1016/j.matpur.2005.10.009. |
[19] |
S. Segura de León, Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth, Adv. Diff. Eq., 8 (2003), 1377-1408. |
show all references
References:
[1] |
B. Abdellaoui, D. Giachetti, I. Peral and M. Walias, Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary, Nonlinear Analysis, 74 (2011), 1355-1371. |
[2] |
D. Arcoya, S. Barile and P. J. Martínez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition, J. Math. Anal. Appl., 350 (2009), 401-408.
doi: 10.1016/j.jmaa.2008.09.073. |
[3] |
D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms, J. Differential Equations, 249 (2010), 2771-2795.
doi: 10.1016/j.jde.2010.05.009. |
[4] |
D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations, 246 (2009), 4006-4042.
doi: 10.1016/j.jde.2009.01.016. |
[5] |
D. Arcoya, J. Carmona and P. J. Martínez-Aparicio, Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms, Adv. Nonlinear Stud., 7 (2007), 299-317. |
[6] |
D. Arcoya and P. J. Martínez-Aparicio, Quasilinear equations with natural growth, Rev. Mat. Iberoamericana, 24 (2008), 597-616.
doi: 10.4171/RMI/548. |
[7] |
D. Arcoya and S. Segura de León, Uniqueness of solutions for some elliptic equations with a quadratic gradient term, ESAIM: Control, Optimization and the Calculus of Variations, 16 (2010), 327-336.
doi: 10.1051/cocv:2008072. |
[8] |
L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calc. Var., 14 (2008), 411-426.
doi: 10.1051/cocv:2008031. |
[9] |
L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data, Nonlinear Anal., 19 (1992), 573-579.
doi: 10.1016/0362-546X(92)90022-7. |
[10] |
L. Boccardo, T. Leonori, L. Orsina and F. Petitta, Quasilinear elliptic equations with singular quadratic growth terms, Comm. Contemp. Math., 13 (2011), 607-642.
doi: 10.1142/S0219199711004300. |
[11] |
L. Boccardo, F. Murat and J. P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugal. Math., 41 (1982), 507-534. |
[12] |
L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 213-235. |
[13] |
L. Boccardo, F. Murat and J. P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183-196.
doi: 10.1007/BF01766148. |
[14] |
L. Boccardo, S. Segura de León and C. Trombetti, Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term, J. Math. Pures Appl., 80 (2001), 919-940.
doi: 10.1016/S0021-7824(01)01211-9. |
[15] |
F. E. Browder, Existence theorems for nonlinear partial differential equations, "Global Analysis" (Proc. Sympos. Pre Math., vol XVI, Berkeley, California, 1968), |
[16] |
D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behaviour, Boll. Unione Mat. Ital., 2 (2009), 349-370. |
[17] |
D. Giachetti and S. Segura de León, Quasilinear stationary problems with a quadratic gradient term having singularities,, J. London Math. Soc., ().
|
[18] |
A. Porretta and S. Segura de León, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492.
doi: 10.1016/j.matpur.2005.10.009. |
[19] |
S. Segura de León, Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth, Adv. Diff. Eq., 8 (2003), 1377-1408. |
[1] |
Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095 |
[2] |
Juan Pablo Rincón-Zapatero. Hopf-Lax formula for variational problems with non-constant discount. Journal of Geometric Mechanics, 2009, 1 (3) : 357-367. doi: 10.3934/jgm.2009.1.357 |
[3] |
Kais Hamza, Fima C. Klebaner. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 829-834. doi: 10.3934/dcdsb.2006.6.829 |
[4] |
Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 |
[5] |
Ignacio Guerra. A semilinear problem with a gradient term in the nonlinearity. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 137-162. doi: 10.3934/dcds.2021110 |
[6] |
Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014 |
[7] |
R. P. Gupta, Shristi Tiwari, Shivam Saxena. The qualitative behavior of a plankton-fish interaction model with food limited growth rate and non-constant fish harvesting. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2791-2815. doi: 10.3934/dcdsb.2021160 |
[8] |
Isaac A. García, Claudia Valls. The three-dimensional center problem for the zero-Hopf singularity. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2027-2046. doi: 10.3934/dcds.2016.36.2027 |
[9] |
V. V. Motreanu. Multiplicity of solutions for variable exponent Dirichlet problem with concave term. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 845-855. doi: 10.3934/dcdss.2012.5.845 |
[10] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Hénon equation involving a nonlinear gradient term. Communications on Pure and Applied Analysis, 2022, 21 (1) : 141-158. doi: 10.3934/cpaa.2021172 |
[11] |
Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507 |
[12] |
Xin Zhong. Singularity formation to the two-dimensional non-barotropic non-resistive magnetohydrodynamic equations with zero heat conduction in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1083-1096. doi: 10.3934/dcdsb.2019209 |
[13] |
Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems and Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959 |
[14] |
Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183 |
[15] |
Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055 |
[16] |
Freddy Dumortier, Santiago Ibáñez, Hiroshi Kokubu, Carles Simó. About the unfolding of a Hopf-zero singularity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4435-4471. doi: 10.3934/dcds.2013.33.4435 |
[17] |
Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709 |
[18] |
Davide Guidetti. Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5107-5141. doi: 10.3934/dcds.2013.33.5107 |
[19] |
Tommaso Leonori, Martina Magliocca. Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2923-2960. doi: 10.3934/cpaa.2019131 |
[20] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]