September  2012, 11(5): 1897-1910. doi: 10.3934/cpaa.2012.11.1897

Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients

1. 

Department of Mathematics, Saitama University, 255 Shimo-Okubo, Urawa, Saitama 338-8570

2. 

School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160

Received  March 2011 Revised  June 2011 Published  March 2012

We establish local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic partial differential equations with unbounded ingredients.
Citation: Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897
References:
[1]

Abstr. Appl. Anal., (2008), Art. ID 178534, 19 pp.  Google Scholar

[2]

Comm. Pure Appl. Math., 48 (1995), 539-570. doi: 10.1002/cpa.3160480504.  Google Scholar

[3]

Ann. Math., 130 (1989), 189-213. doi: 10.2307/1971480.  Google Scholar

[4]

American Mathematical Society, Providence, 1995.  Google Scholar

[5]

Comm. Pure Appl. Math., 49 (1996), 365-397. doi: 10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A.  Google Scholar

[6]

Bull. Amer. Math. Soc., 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[7]

Comm. Partial Differential Equations, 25 (2000), 1997-2053. doi: 10.1080/03605300008821576.  Google Scholar

[8]

Indiana Univ. Math. J., 42 (1993), 413-423. doi: 10.1512/iumj.1993.42.42019.  Google Scholar

[9]

Duke Math. J., 51 (1984), 997-1016. doi: 10.1215/S0012-7094-84-05145-7.  Google Scholar

[10]

Ph.D. Thesis, UCSB, 1996. Google Scholar

[11]

Comm. Partial Differential Equations, 23 (1998), 967-983. doi: 10.1080/03605309808821375.  Google Scholar

[12]

2nd ed., Springer-Verlag, New York, 1983.  Google Scholar

[13]

J. Differential Equations, 250 (2011), 1553-1574. doi: 10.1016/j.jde.2010.07.005.  Google Scholar

[14]

Math. Ann., 339 (2007), 461-484. doi: 10.1007/s00208-007-0125-z.  Google Scholar

[15]

J. Math. Soc. Japan, 61 (2009), 723-755. doi: 10.2969/jmsj/06130723.  Google Scholar

[16]

(Russian) Dokl. Akad. Nauk SSSR, 245 (1979), 18-20.  Google Scholar

[17]

(Russian) Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 161-175, 239.  Google Scholar

[18]

(Russian) in "Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions,'' 12, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 96 (1980), 272-287, 312.  Google Scholar

[19]

Arch. Ration. Mech. Anal., 195 (2010), 579-607 doi: 10.1007/s00205-009-0218-9.  Google Scholar

[20]

Invent. Math., 61 (1980), 67-79. doi: 10.1007/BF01389895.  Google Scholar

[21]

Rev. Mat. Iberoamericana, 4 (1988), 453-468. doi: 10.4171/RMI/80.  Google Scholar

[22]

Comm. Pure Appl. Math., 45 (1992), 27-76. doi: 10.1002/cpa.3160450103.  Google Scholar

[23]

Z. Anal. Anwend., 28 (2009), 129-164. doi: 10.4171/ZAA/1377.  Google Scholar

show all references

References:
[1]

Abstr. Appl. Anal., (2008), Art. ID 178534, 19 pp.  Google Scholar

[2]

Comm. Pure Appl. Math., 48 (1995), 539-570. doi: 10.1002/cpa.3160480504.  Google Scholar

[3]

Ann. Math., 130 (1989), 189-213. doi: 10.2307/1971480.  Google Scholar

[4]

American Mathematical Society, Providence, 1995.  Google Scholar

[5]

Comm. Pure Appl. Math., 49 (1996), 365-397. doi: 10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A.  Google Scholar

[6]

Bull. Amer. Math. Soc., 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[7]

Comm. Partial Differential Equations, 25 (2000), 1997-2053. doi: 10.1080/03605300008821576.  Google Scholar

[8]

Indiana Univ. Math. J., 42 (1993), 413-423. doi: 10.1512/iumj.1993.42.42019.  Google Scholar

[9]

Duke Math. J., 51 (1984), 997-1016. doi: 10.1215/S0012-7094-84-05145-7.  Google Scholar

[10]

Ph.D. Thesis, UCSB, 1996. Google Scholar

[11]

Comm. Partial Differential Equations, 23 (1998), 967-983. doi: 10.1080/03605309808821375.  Google Scholar

[12]

2nd ed., Springer-Verlag, New York, 1983.  Google Scholar

[13]

J. Differential Equations, 250 (2011), 1553-1574. doi: 10.1016/j.jde.2010.07.005.  Google Scholar

[14]

Math. Ann., 339 (2007), 461-484. doi: 10.1007/s00208-007-0125-z.  Google Scholar

[15]

J. Math. Soc. Japan, 61 (2009), 723-755. doi: 10.2969/jmsj/06130723.  Google Scholar

[16]

(Russian) Dokl. Akad. Nauk SSSR, 245 (1979), 18-20.  Google Scholar

[17]

(Russian) Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 161-175, 239.  Google Scholar

[18]

(Russian) in "Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions,'' 12, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 96 (1980), 272-287, 312.  Google Scholar

[19]

Arch. Ration. Mech. Anal., 195 (2010), 579-607 doi: 10.1007/s00205-009-0218-9.  Google Scholar

[20]

Invent. Math., 61 (1980), 67-79. doi: 10.1007/BF01389895.  Google Scholar

[21]

Rev. Mat. Iberoamericana, 4 (1988), 453-468. doi: 10.4171/RMI/80.  Google Scholar

[22]

Comm. Pure Appl. Math., 45 (1992), 27-76. doi: 10.1002/cpa.3160450103.  Google Scholar

[23]

Z. Anal. Anwend., 28 (2009), 129-164. doi: 10.4171/ZAA/1377.  Google Scholar

[1]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[2]

Robert Jensen, Andrzej Świech. Uniqueness and existence of maximal and minimal solutions of fully nonlinear elliptic PDE. Communications on Pure & Applied Analysis, 2005, 4 (1) : 199-207. doi: 10.3934/cpaa.2005.4.187

[3]

Rainer Buckdahn, Christian Keller, Jin Ma, Jianfeng Zhang. Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 7-. doi: 10.1186/s41546-020-00049-8

[4]

Ibrahim Ekren, Jianfeng Zhang. Pseudo-Markovian viscosity solutions of fully nonlinear degenerate PPDEs. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 6-. doi: 10.1186/s41546-016-0010-3

[5]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[6]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[7]

Luisa Fattorusso, Antonio Tarsia. Regularity in Campanato spaces for solutions of fully nonlinear elliptic systems. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1307-1323. doi: 10.3934/dcds.2011.31.1307

[8]

Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019

[9]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[10]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[11]

Chuanqiang Chen. On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4761-4811. doi: 10.3934/dcds.2016007

[12]

Chuanqiang Chen. On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3383-3402. doi: 10.3934/dcds.2014.34.3383

[13]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[14]

Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248

[15]

Xiaoming He, Xin Zhao, Wenming Zou. Maximum principles for a fully nonlinear nonlocal equation on unbounded domains. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4387-4399. doi: 10.3934/cpaa.2020200

[16]

Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813

[17]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[18]

Luca Rossi. Non-existence of positive solutions of fully nonlinear elliptic equations in unbounded domains. Communications on Pure & Applied Analysis, 2008, 7 (1) : 125-141. doi: 10.3934/cpaa.2008.7.125

[19]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[20]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations & Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]