January  2012, 11(1): 19-46. doi: 10.3934/cpaa.2012.11.19

Effective viscosity of bacterial suspensions: a three-dimensional PDE model with stochastic torque

1. 

Department of Mathematics, Penn State University, McAllister Bldg., University Park, PA 16802, United States

2. 

Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, United States

3. 

Department of Mathematics and Materials Research Institute, Penn State University, University Park, PA 16802

4. 

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, United States

Received  December 2009 Revised  March 2010 Published  September 2011

We present a PDE model for dilute suspensions of swimming bacteria in a three-dimensional Stokesian fluid. This model is used to calculate the statistically-stationary bulk deviatoric stress and effective viscosity of the suspension from the microscopic details of the interaction of an elongated body with the background flow. A bacterium is modeled as an impenetrable prolate spheroid with self-propulsion provided by a point force, which appears in the model as an inhomogeneous delta function in the PDE. The bacterium is also subject to a stochastic torque in order to model tumbling (random reorientation). Due to a bacterium's asymmetric shape, interactions with prescribed generic planar background flows, such as a pure straining or planar shear flow, cause the bacterium to preferentially align in certain directions. Due to the stochastic torque, the steady-state distribution of orientations is unique for a given background flow. Under this distribution of orientations, self-propulsion produces a reduction in the effective viscosity. For sufficiently weak background flows, the effect of self-propulsion on the effective viscosity dominates all other contributions, leading to an effective viscosity of the suspension that is lower than the viscosity of the ambient fluid. This is in qualitative agreement with recent experiments on suspensions of Bacillus subtilis.
Citation: B. M. Haines, Igor S. Aranson, Leonid Berlyand, Dmitry A. Karpeev. Effective viscosity of bacterial suspensions: a three-dimensional PDE model with stochastic torque. Communications on Pure and Applied Analysis, 2012, 11 (1) : 19-46. doi: 10.3934/cpaa.2012.11.19
References:
[1]

G. Batchelor, The stress system in a suspension of force-free particles, J. Fluid Mech., 41 (1970), 545-570. doi: 10.1017/S0022112070000745.

[2]

G. K. Batchelor and J. T. Green, The determination of the bulk stress in a suspension of spherical particles to order $c^2$, J. Fluid Mech., 56 (1972), 401-427. doi: 10.1017/S0022112072002435.

[3]

L. Berlyand, L. Borcea and A. Panchenko, Network approximation for effective viscosity of concentrated suspensions with complex geometry, SIAM J. Math. Anal., 36 (2005), 1580-1628. doi: 10.1137/S0036141003424708.

[4]

L. Berlyand, Y. Gorb and A. Novikov, Fictitious fluid approach and anomalous blow-up of the dissipation rate in a 2d model of concentrated suspensions, Arch. Rat. Mech. Anal., 193 (2009), 585-622, 2008. doi: 10.1007/s00205-008-0152-2.

[5]

L. Berlyand and A. Panchenko, Strong and weak blow up of the viscous dissipation rates for concentrated suspensions, J. Fluid Mech., 578 (2007), 1-34. doi: 10.1017/S0022112007004922.

[6]

H. Brenner and D. W. Condiff, Transport mechanics in systems of orientable particles: Iii. arbitrary particles, J. Colloid and Interface Sci., 41 (1972), 228-274. doi: 10.1016/0021-9797(72)90111-7.

[7]

A. Einstein, "Investigations on the theory of the Brownian movement,'' Dover Publications, New York, 1956.

[8]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I,'' Springer, New York, 1994.

[9]

V. T. Gyrya, I. S. Aranson, L. V. Berlyand, and D. A. Karpeev, A model of hydrodynamic interaction between swimming bacteria, Bull. Math. Biol., 72 (2009), 148-183. doi: 10.1007/s11538-009-9442-6.

[10]

B. M. Haines and A. L. Mazzucato, A proof of Einstein's effective viscosity for a dilute suspension of spheres, preprint, arXiv:1104.1102.

[11]

B. M. Haines, I. S. Aranson, L. Berlyand and D. A. Karpeev, Effective viscosity of dilute bacterial suspensions: a two-dimensional model, Phys. Biol., 5 (2008), 046003. doi: 10.1088/1478-3975/5/4/046003.

[12]

B. M. Haines, A. Sokolov, I. S. Aranson, L. Berlyand and D. A. Karpeev, Three-dimensional model for the effective viscosity of bacterial suspensions, Phys. Rev. E, 80 (2009), 041922. doi: 10.1103/PhysRevE.80.041922.

[13]

Y. Hatwalne, S. Ramaswamy, M. Rao and R. A. Simha, Rheology of active-particle suspensions, Phys. Rev. Lett., 92 (2004), 118101. doi: 10.1103/PhysRevLett.92.118101.

[14]

J. P. Hernandez-Ortiz, C. G. Stoltz, and M. D. Graham, Transport and collective dynamics in suspensions of confined swimming particles, Phys. Rev. Lett., 95 (2005), 204501. doi: 10.1103/PhysRevLett.95.204501.

[15]

E. J. Hinch and L. G. Leal, The effect of brownian motion on the rheological properties of a suspension of non-spherical particles, J. Fluid Mech., 52 (1972), 683-712. doi: 10.1017/S002211207200271X.

[16]

T. Ishikawa and T. J. Pedley, The rheology of a semi-dilute suspension of swimming model micro-organisms, J. Fluid Mech., 588 (2007), 399-435. doi: 10.1017/S0022112007007835.

[17]

K. Ito, Stochastic integral, Proc. Imperial Acad., Tokyo, 20 (1944), 519-24. doi: 10.3792/pia/1195572786.

[18]

K. Ito, Stochastic differential equations on a differentiable manifold 2, mem. Coll. Sci. Kyôto Univ., 28 (1953), 82-85.

[19]

G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, R. Soc. London Ser. A, 102 (1922), 161-79. doi: 10.1098/rspa.1922.0078.

[20]

M. J. Kim and K. S. Breuer, Use of bacterial carpets to enhance mixing in microfluidic systems, Jour. Fluids Engin., 129 (2007), 319-25. doi: 10.1115/1.2427083.

[21]

S. Kim and S. Karrila, "Microhydrodynamics,'' Dover Publications, New York, 1991.

[22]

L. G. Leal and E. J. Hinch, The effect of weak brownian rotations on particles in shear flow, J. Fluid Mech., 46 (1971), 685-703. doi: 10.1017/S0022112071000788.

[23]

T. Levy and E. Sanchez-Palencia, Suspension of solid particles in a newtonian fluid, J. Non-Newt. Fluid Mech., 13 (1983), 63-78. doi: 10.1016/0377-0257(83)85022-8.

[24]

R. M. Macnab, The bacterial flagellum: Reversible rotary propellor and type iii export apparatus, J. Bacteriology, 181 (1999), 7149-7153.

[25]

H. P. McKean, "Stochastic Integrals,'' Academic Press, New York and London, 1969.

[26]

K. C. Nunan and J. B. Keller, Effective viscosity of a periodic suspension, J. Fluid Mech., 142 (1984), 269-287. doi: 10.1017/S0022112084001105.

[27]

T. J. Pedley and J. O. Kessler, A new continuum model for suspensions of gyrotactic micro-organisms, J. Fluid Mech., 212 (1990), 155-182. doi: 10.1017/S0022112090001914.

[28]

H. Risken, "The Fokker-Planck Equation: Methods of Solution and Applications,'' Springer-Verlag, New York, 1989. doi: 10.1115/1.2897281.

[29]

D. Saintillan, The dilute rheology of swimming suspensions: A simple kinetic model, Experimental Mechanics, 50, 2010. doi: 10.1007/s11340-009-9267-0.

[30]

J. Shioi, S. Matsuura and Y. Imae, Quantitative measurements of proton motive force and motility in bacillus subtilis, J. Bacteriol., 144 (1980), 891-897.

[31]

A. Sokolov and I. S. Aranson, Reduction of viscosity in suspension of swimming bacteria, Phys. Rev. Lett., 103 (2009), 148101. doi: 10.1103/PhysRevLett.103.148101.

[32]

A. Sokolov, I. S. Aranson, J. O. Kessler and R. E. Goldstein, Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett., 98 (2007), 158102. doi: 10.1103/PhysRevLett.98.158102.

[33]

A. Sokolov, R. E. Goldstein, F. I. Feldchtein and I. S. Aranson, Enhanced mixing and spatial instability in concentrated bacterial suspensions, Phys. Rev. E, 80 (2009), 031903. doi: 10.1103/PhysRevE.80.031903.

[34]

G. Subramanian and D. L. Koch, Critical bacterial concentration for the onset of collective swimming, J. Fluid Mech., 632 (2009), 359-400. doi: 10.1017/S002211200900706X.

[35]

L. Turner, W. S. Ryu and H. C. Berg, Real-time imaging of fluorescent flagellar filaments, J. Bacteriol., 182 (2000), 2793-801. doi: 10.1128/JB.182.10.2793-2801.2000.

[36]

I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, PNAS, 102 (2005), 2277-82 doi: 10.1073/pnas.0406724102.

[37]

M. Wu, J. W. Roberts, S. Kim, D. L. Koch and M. P. Delisa, Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique, Applied and Environmental Microbiology, 72 (2006), 4987-94. doi: 10.1128/AEM.00158-06.

[38]

X.-L. Wu and A. Libchaber, Particle diffusion in a quasi-two-dimensional bacterial bath, Phys. Rev. Lett., 84 (2000), 3017-20. doi: 10.1103/PhysRevLett.84.3017.

show all references

References:
[1]

G. Batchelor, The stress system in a suspension of force-free particles, J. Fluid Mech., 41 (1970), 545-570. doi: 10.1017/S0022112070000745.

[2]

G. K. Batchelor and J. T. Green, The determination of the bulk stress in a suspension of spherical particles to order $c^2$, J. Fluid Mech., 56 (1972), 401-427. doi: 10.1017/S0022112072002435.

[3]

L. Berlyand, L. Borcea and A. Panchenko, Network approximation for effective viscosity of concentrated suspensions with complex geometry, SIAM J. Math. Anal., 36 (2005), 1580-1628. doi: 10.1137/S0036141003424708.

[4]

L. Berlyand, Y. Gorb and A. Novikov, Fictitious fluid approach and anomalous blow-up of the dissipation rate in a 2d model of concentrated suspensions, Arch. Rat. Mech. Anal., 193 (2009), 585-622, 2008. doi: 10.1007/s00205-008-0152-2.

[5]

L. Berlyand and A. Panchenko, Strong and weak blow up of the viscous dissipation rates for concentrated suspensions, J. Fluid Mech., 578 (2007), 1-34. doi: 10.1017/S0022112007004922.

[6]

H. Brenner and D. W. Condiff, Transport mechanics in systems of orientable particles: Iii. arbitrary particles, J. Colloid and Interface Sci., 41 (1972), 228-274. doi: 10.1016/0021-9797(72)90111-7.

[7]

A. Einstein, "Investigations on the theory of the Brownian movement,'' Dover Publications, New York, 1956.

[8]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I,'' Springer, New York, 1994.

[9]

V. T. Gyrya, I. S. Aranson, L. V. Berlyand, and D. A. Karpeev, A model of hydrodynamic interaction between swimming bacteria, Bull. Math. Biol., 72 (2009), 148-183. doi: 10.1007/s11538-009-9442-6.

[10]

B. M. Haines and A. L. Mazzucato, A proof of Einstein's effective viscosity for a dilute suspension of spheres, preprint, arXiv:1104.1102.

[11]

B. M. Haines, I. S. Aranson, L. Berlyand and D. A. Karpeev, Effective viscosity of dilute bacterial suspensions: a two-dimensional model, Phys. Biol., 5 (2008), 046003. doi: 10.1088/1478-3975/5/4/046003.

[12]

B. M. Haines, A. Sokolov, I. S. Aranson, L. Berlyand and D. A. Karpeev, Three-dimensional model for the effective viscosity of bacterial suspensions, Phys. Rev. E, 80 (2009), 041922. doi: 10.1103/PhysRevE.80.041922.

[13]

Y. Hatwalne, S. Ramaswamy, M. Rao and R. A. Simha, Rheology of active-particle suspensions, Phys. Rev. Lett., 92 (2004), 118101. doi: 10.1103/PhysRevLett.92.118101.

[14]

J. P. Hernandez-Ortiz, C. G. Stoltz, and M. D. Graham, Transport and collective dynamics in suspensions of confined swimming particles, Phys. Rev. Lett., 95 (2005), 204501. doi: 10.1103/PhysRevLett.95.204501.

[15]

E. J. Hinch and L. G. Leal, The effect of brownian motion on the rheological properties of a suspension of non-spherical particles, J. Fluid Mech., 52 (1972), 683-712. doi: 10.1017/S002211207200271X.

[16]

T. Ishikawa and T. J. Pedley, The rheology of a semi-dilute suspension of swimming model micro-organisms, J. Fluid Mech., 588 (2007), 399-435. doi: 10.1017/S0022112007007835.

[17]

K. Ito, Stochastic integral, Proc. Imperial Acad., Tokyo, 20 (1944), 519-24. doi: 10.3792/pia/1195572786.

[18]

K. Ito, Stochastic differential equations on a differentiable manifold 2, mem. Coll. Sci. Kyôto Univ., 28 (1953), 82-85.

[19]

G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, R. Soc. London Ser. A, 102 (1922), 161-79. doi: 10.1098/rspa.1922.0078.

[20]

M. J. Kim and K. S. Breuer, Use of bacterial carpets to enhance mixing in microfluidic systems, Jour. Fluids Engin., 129 (2007), 319-25. doi: 10.1115/1.2427083.

[21]

S. Kim and S. Karrila, "Microhydrodynamics,'' Dover Publications, New York, 1991.

[22]

L. G. Leal and E. J. Hinch, The effect of weak brownian rotations on particles in shear flow, J. Fluid Mech., 46 (1971), 685-703. doi: 10.1017/S0022112071000788.

[23]

T. Levy and E. Sanchez-Palencia, Suspension of solid particles in a newtonian fluid, J. Non-Newt. Fluid Mech., 13 (1983), 63-78. doi: 10.1016/0377-0257(83)85022-8.

[24]

R. M. Macnab, The bacterial flagellum: Reversible rotary propellor and type iii export apparatus, J. Bacteriology, 181 (1999), 7149-7153.

[25]

H. P. McKean, "Stochastic Integrals,'' Academic Press, New York and London, 1969.

[26]

K. C. Nunan and J. B. Keller, Effective viscosity of a periodic suspension, J. Fluid Mech., 142 (1984), 269-287. doi: 10.1017/S0022112084001105.

[27]

T. J. Pedley and J. O. Kessler, A new continuum model for suspensions of gyrotactic micro-organisms, J. Fluid Mech., 212 (1990), 155-182. doi: 10.1017/S0022112090001914.

[28]

H. Risken, "The Fokker-Planck Equation: Methods of Solution and Applications,'' Springer-Verlag, New York, 1989. doi: 10.1115/1.2897281.

[29]

D. Saintillan, The dilute rheology of swimming suspensions: A simple kinetic model, Experimental Mechanics, 50, 2010. doi: 10.1007/s11340-009-9267-0.

[30]

J. Shioi, S. Matsuura and Y. Imae, Quantitative measurements of proton motive force and motility in bacillus subtilis, J. Bacteriol., 144 (1980), 891-897.

[31]

A. Sokolov and I. S. Aranson, Reduction of viscosity in suspension of swimming bacteria, Phys. Rev. Lett., 103 (2009), 148101. doi: 10.1103/PhysRevLett.103.148101.

[32]

A. Sokolov, I. S. Aranson, J. O. Kessler and R. E. Goldstein, Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett., 98 (2007), 158102. doi: 10.1103/PhysRevLett.98.158102.

[33]

A. Sokolov, R. E. Goldstein, F. I. Feldchtein and I. S. Aranson, Enhanced mixing and spatial instability in concentrated bacterial suspensions, Phys. Rev. E, 80 (2009), 031903. doi: 10.1103/PhysRevE.80.031903.

[34]

G. Subramanian and D. L. Koch, Critical bacterial concentration for the onset of collective swimming, J. Fluid Mech., 632 (2009), 359-400. doi: 10.1017/S002211200900706X.

[35]

L. Turner, W. S. Ryu and H. C. Berg, Real-time imaging of fluorescent flagellar filaments, J. Bacteriol., 182 (2000), 2793-801. doi: 10.1128/JB.182.10.2793-2801.2000.

[36]

I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, PNAS, 102 (2005), 2277-82 doi: 10.1073/pnas.0406724102.

[37]

M. Wu, J. W. Roberts, S. Kim, D. L. Koch and M. P. Delisa, Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique, Applied and Environmental Microbiology, 72 (2006), 4987-94. doi: 10.1128/AEM.00158-06.

[38]

X.-L. Wu and A. Libchaber, Particle diffusion in a quasi-two-dimensional bacterial bath, Phys. Rev. Lett., 84 (2000), 3017-20. doi: 10.1103/PhysRevLett.84.3017.

[1]

Catherine Choquet, Ali Sili. Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4 (4) : 649-666. doi: 10.3934/nhm.2009.4.649

[2]

Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Specified homogenization of a discrete traffic model leading to an effective junction condition. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2173-2206. doi: 10.3934/cpaa.2018104

[3]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[4]

Sista Sivaji Ganesh, Vivek Tewary. Bloch wave approach to almost periodic homogenization and approximations of effective coefficients. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1989-2024. doi: 10.3934/dcdsb.2021119

[5]

Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449

[6]

Carlos A. Berenstein and Alain Yger. Residues and effective Nullstellensatz. Electronic Research Announcements, 1996, 2: 82-91.

[7]

Silogini Thanarajah, Hao Wang. Competition of motile and immotile bacterial strains in a petri dish. Mathematical Biosciences & Engineering, 2013, 10 (2) : 399-424. doi: 10.3934/mbe.2013.10.399

[8]

Manuela Caratozzolo, Santina Carnazza, Luigi Fortuna, Mattia Frasca, Salvatore Guglielmino, Giovanni Gurrieri, Giovanni Marletta. Self-organizing models of bacterial aggregation states. Mathematical Biosciences & Engineering, 2008, 5 (1) : 75-83. doi: 10.3934/mbe.2008.5.75

[9]

Zhi Lin, Katarína Boďová, Charles R. Doering. Models & measures of mixing & effective diffusion. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 259-274. doi: 10.3934/dcds.2010.28.259

[10]

Mudassar Imran, Hal L. Smith. The dynamics of bacterial infection, innate immune response, and antibiotic treatment. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 127-143. doi: 10.3934/dcdsb.2007.8.127

[11]

Radek Erban, Hyung Ju Hwang. Global existence results for complex hyperbolic models of bacterial chemotaxis. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1239-1260. doi: 10.3934/dcdsb.2006.6.1239

[12]

Mohamed Boulanouar. On a Mathematical model with non-compact boundary conditions describing bacterial population (Ⅱ). Evolution Equations and Control Theory, 2019, 8 (2) : 247-271. doi: 10.3934/eect.2019014

[13]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[14]

Simeone Marino, Edoardo Beretta, Denise E. Kirschner. The role of delays in innate and adaptive immunity to intracellular bacterial infection. Mathematical Biosciences & Engineering, 2007, 4 (2) : 261-286. doi: 10.3934/mbe.2007.4.261

[15]

Fadoua El Moustaid, Amina Eladdadi, Lafras Uys. Modeling bacterial attachment to surfaces as an early stage of biofilm development. Mathematical Biosciences & Engineering, 2013, 10 (3) : 821-842. doi: 10.3934/mbe.2013.10.821

[16]

Wei Yang, Jinliang Wang. Analysis of a diffusive cholera model incorporating latency and bacterial hyperinfectivity. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3937-3957. doi: 10.3934/cpaa.2021138

[17]

Stefano Bianchini, Alberto Bressan. A case study in vanishing viscosity. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 449-476. doi: 10.3934/dcds.2001.7.449

[18]

Umberto Mosco, Maria Agostina Vivaldi. Vanishing viscosity for fractal sets. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1207-1235. doi: 10.3934/dcds.2010.28.1207

[19]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

[20]

Paolo Luzzini, Paolo Musolino. Perturbation analysis of the effective conductivity of a periodic composite. Networks and Heterogeneous Media, 2020, 15 (4) : 581-603. doi: 10.3934/nhm.2020015

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (8)

[Back to Top]