\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter

Abstract Related Papers Cited by
  • \noindent For the Dirichlet problem $-\Delta u+\lambda V(x) u=u^p$ in $\Omega \subset \mathbb R^N$, $N\geq 3$, in the regime $\lambda \to +\infty$ we aim to give a description of the blow-up mechanism. For solutions with symmetries an uniform bound on the ``invariant" Morse index provides a localization of the blow-up orbits in terms of c.p.'s of a suitable modified potential. The main difficulty here is related to the presence of fixed points for the underlying group action.
    Mathematics Subject Classification: Primary: 35J60, 35B25, 35B44; Secondary: 35J25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, A. Malchiodi and W. M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I, Comm. Math. Phys., 235 (2003), 427-466.doi: 10.1007/s00220-003-0811-y.

    [2]

    A. Ambrosetti, A. Malchiodi and W. M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. II, Indiana Univ. Math. J., 53 (2004), 297-329.doi: 10.1512/iumj.2004.53.2400.

    [3]

    M. Badiale and T. D'Aprile, Concentration around a sphere for a singularly perturbed Schrödinger equation, Nonlinear Anal., 49 (2002), 947-985.doi: 10.1016/S0362-546X(01)00717-9.

    [4]

    V. Benci and T. D'Aprile, The semiclassical limit of the nonlinear Schrödinger equation in a radial potential, J. Differential Equations, 184 (2002), 109-138.doi: 10.1006/jdeq.2001.4138.

    [5]

    D. Cao, E. N. Dancer, E. Noussair and S. Yan, On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discrete Contin. Dyn. Syst., 2 (1996), 221-236.doi: 10.3934/dcds.1996.2.221.

    [6]

    D. Cao and E. Noussair, Multi-peak solutions for a singularly perturbed semilinear elliptic problem, J. Differential Equations, 166 (2000), 266-289.doi: 10.1006/jdeq.2000.3795.

    [7]

    E. N. Dancer, Some singularly perturbed problems on annuli and a counterexample to a problem of Gidas, Ni and Nirenberg, Bull. London Math. Soc., 29 (1997), 322-326.doi: 10.1112/S0024609396002391.

    [8]

    E. N. Dancer and S. Yan, A singularly perturbed elliptic problem in bounded domains with nontrivial topology, Adv. Differential Equations, 4 (1999), 347-368.

    [9]

    E. N. Dancer and S. Yan, Effect of the domain geometry on the existence of multipeak solution for an elliptic problem, Topol. Methods Nonlinear Anal., 14 (1999), 1-38.

    [10]

    E. N. Dancer and S. Yan, A new type of concentration solutions for a singularly perturbed elliptic problem, Trans. Amer. Math. Soc., 359 (2007), 1765-1790.doi: 10.1090/S0002-9947-06-04386-8.

    [11]

    E. N. Dancer and J. Wei, On the effect of domain topology in a singular perturbation problem, Topol. Methods Nonlinear Anal., 11 (1998), 227-248.

    [12]

    T. D'Aprile, On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Differential Integral Equations, 16 (2003), 349-384.

    [13]

    M. del Pino, P. Felmer and J. Wei, On the role of distance function in some singular perturbation problems, Comm. Partial Differential Equations, 25 (2000), 155-177.doi: 10.1080/03605300008821511.

    [14]

    O. Druet, F. Robert and J. WeiThe Lin-Ni's problem for mean convex domains, preprint, arXiv:1103.3811.

    [15]

    P. Esposito, G. Mancini, Sanjiban Santra and P. N. Srikanth, Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index, J. Differential Equations, 239 (2007), 1-15.doi: 10.1016/j.jde.2007.04.008.

    [16]

    P. Esposito and M. Petralla, Pointwise blow-up phenomena for a Dirichlet problem, Comm. Partial Differential Equations, 36 (2011), 1654-1682.doi: 10.1080/03605302.2011.574304.

    [17]

    A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb R^N$, J. Math. Pures Appl., 87 (2007), 537-561.doi: 10.1016/j.matpur.2007.03.001.

    [18]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd edition, Springer-Verlag, Berlin, 1983.

    [19]

    M. Grossi and A. Pistoia, On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations, 5 (2000), 1397-1420.

    [20]

    M. K. Kwong, Uniqueness of positive solutions of positive solutions of $\Delta u - u + u^p =0$ in $\mathbb R^N$, Arch. Rat. Mech. Anal., 105 (1989), 243-266.doi: 10.1007/BF00251502.

    [21]

    Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490.

    [22]

    F. Mahmoudi and A. Malchiodi, Concentration on minimal submanifolds for a singularly perturbed Neumann problem, Adv. Math., 209 (2007), 460-525.doi: 10.1016/j.aim.2006.05.014.

    [23]

    A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, Geom. Funct. Anal., 15 (2005), 1162-1222.doi: 10.1007/s00039-005-0542-7.

    [24]

    A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., 55 (2002), 1507-1568.doi: 10.1002/cpa.10049.

    [25]

    A. Malchiodi and M. Montenegro, Multidimensional boundary-layers for a singularly perturbed Neumann problem, Duke Math. J., 124 (2004), 105-143.doi: 10.1215/S0012-7094-04-12414-5.

    [26]

    A. Malchiodi, W. M. Ni and J. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 143-163.doi: 10.1016/j.anihpc.2004.05.003.

    [27]

    R. Molle and D. Passaseo, Concentration phenomena for solutions of superlinear elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 63-84.doi: 10.1016/j.anihpc.2005.02.002.

    [28]

    W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45 (1998), 9-18.

    [29]

    W. M. Ni and I. Takagi, On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.doi: 10.1002/cpa.3160440705.

    [30]

    W. M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.doi: 10.1215/S0012-7094-93-07004-4.

    [31]

    W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Math. Appl., 48 (1995), 731-768.doi: 10.1002/cpa.3160480704.

    [32]

    Maristella Petralla, "Asymptotic Analysis for a Singularly Perturbed Dirichlet Problem," Ph.D thesis, University of Rome III, 2010.

    [33]

    M. PetrallaNon existence of bounded Morse index solutions for a super-critical Dirichlet problem with a large parameter, in preparation.

    [34]

    A. Pistoia, The role of the distance function in some singular perturbation problem, Methods Appl. Anal., 8 (2001), 301-319.

    [35]

    B. Ruf and P. N. Srikanth, Singularly perturbed elliptic equations with solutions concentrating on a $1-$dimensional orbit, J. Eur. Math. Soc., 12 (2010), 413-427.doi: 10.4171/JEMS/203.

    [36]

    J. Wei, On the construction of single-peaked solutions of a singularly perturbed semilinear Dirichlet problem, J. Differential Equations, 129 (1996), 315-333.doi: 10.1006/jdeq.1996.0120.

    [37]

    J. Wei, On the interior spike solutions for some singular perturbation problems, Proc. Royal Soc. of Edinburgh Sect. A, 128 (1998), 849-874.doi: 10.1017/S030821050002182X.

    [38]

    J. Wei, On the effect of the domain geometry in singular perturbation problems, Differential Integral Equations, 13 (2000), 15-45.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return