• Previous Article
    Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Solvability and asymptotic analysis of a generalization of the Caginalp phase field system
September  2012, 11(5): 1983-2003. doi: 10.3934/cpaa.2012.11.1983

A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature

1. 

Università di Roma Tor Vergata, Dipartimento di Matematica, via della ricerca scienti ca, 1, I-00133 Rome, Italy

2. 

LAMFA – CNRS UMR 6140, Université de Picardie Jules Verne, 33, rue Saint-Leu 80039 Amiens CEDEX 1

3. 

Università di Roma Tor Vergata, Dipartimento di Matematica, Via della Ricerca Scientifica, I-00133 Rome

Received  June 2011 Revised  November 2011 Published  March 2012

We consider a singular or degenerate elliptic problem in a proper domain and we prove a gradient bound and some symmetry results.
Citation: Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983
References:
[1]

S. S. Antman, Nonuniqueness of equilibrium states for bars in tension, J. Math. Anal. Appl., 44 (1973), 333-349. doi: 10.1016/0022-247X(73)90063-2.

[2]

Luis Caffarelli, Nicola Garofalo and Fausto Segala, A gradient bound for entire solutions of quasi-linear equations and its conseguences, Comm. Pure Appl. Math., 47 (1994), 1457-1473. doi: 10.1002/cpa.3160471103.

[3]

Diego Castellaneta, Stima puntuale del gradiente per soluzioni di equazioni ellittiche singolari o degeneri in domini propri con curvatura media nonnegativa, avaliable online at http://www.math.utexas.edu/mp$\_$arc/, Tesi di laurea specialistica, Università di Roma Tor Vergata, 2009.

[4]

Emmanuele DiBenedetto, "Degerate Parabolic Equation," Springer-Verlag, 1991.

[5]

James Eells, The surfaces of Delaunay, Math. Intelligencer, 9 (1987), 53-57. doi: 10.1007/BF03023575.

[6]

Alberto Farina, Berardino Sciunzi and Enrico Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741-791.

[7]

Alberto Farina and Enrico Valdinoci, Geometry of quasiminimal phase transitions, Calc. Var. Partial Differ. Equ., 33 (2008), 1-35. doi: 10.1007/s00526-007-0146-1.

[8]

Alberto Farina and Enrico Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature, Adv. Math., 225 (2010), 2808-2827. doi: 10.1016/j.aim.2010.05.008.

[9]

Alberto Farina and Enrico Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal., 195 (2010), 1025-1058. doi: 10.1007/s00205-009-0227-8.

[10]

David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, volume 224 of "Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]," Springer-Verlag, Berlin, second edition, 1983.

[11]

Lars Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Reprint of the second (1990) edition. Classics in Mathematics. Springer-Verlag, Berlin, 2003.

[12]

Lars Hörmander, "The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients," Reprint of the 1983 original. Classics in Mathematics. Springer-Verlag, Berlin, 2005.

[13]

Bernd Kawohl, "Symmetrization-or how to Prove Symmetry of Solutions to a PDE," Partial differential equations (Praha, 1998), 214-229, Res. Notes Math., 406, Chapman & Hall/CRC, Boca Raton, FL, 2000.

[14]

Olga A. Ladyzhenskaya and Nina N. Ural'tseva, "Linear and Quasilinear Elliptic Equations," translated from the Russian by Scripta Technica, Academic Press, New York-London, 1968.

[15]

Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3.

[16]

Rafael de la Llave and Enrico Valdinoci, Ground states and critical points for generalized Frankel-Kontorova models in $Z^d$, Nonlinearity, 20 (2007), 2409-2424. doi: 10.1088/0951-7715/20/10/008.

[17]

Luciano Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684. doi: 10.1002/cpa.3160380515.

[18]

Lawrence E. Payne, Some remarks on maximum principles, J. Analyse Math., 30 (1976), 421-433. doi: 10.1007/BF02786729.

[19]

Patrizia Pucci and James Serrin, "The Maximum Principle," Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007.

[20]

Renè P. Sperb, "Maximum Principles and Their Applications," volume 157 of Mathematics in Science and Engineering. Academic Press Inc, [Harcourt Brace Jovanovich Publishers], New York, 1981.

[21]

Gudlaugur Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations, Handbook of differential geometry, Vol. I, 963-995, North-Holland, Amsterdam, 2000.

show all references

References:
[1]

S. S. Antman, Nonuniqueness of equilibrium states for bars in tension, J. Math. Anal. Appl., 44 (1973), 333-349. doi: 10.1016/0022-247X(73)90063-2.

[2]

Luis Caffarelli, Nicola Garofalo and Fausto Segala, A gradient bound for entire solutions of quasi-linear equations and its conseguences, Comm. Pure Appl. Math., 47 (1994), 1457-1473. doi: 10.1002/cpa.3160471103.

[3]

Diego Castellaneta, Stima puntuale del gradiente per soluzioni di equazioni ellittiche singolari o degeneri in domini propri con curvatura media nonnegativa, avaliable online at http://www.math.utexas.edu/mp$\_$arc/, Tesi di laurea specialistica, Università di Roma Tor Vergata, 2009.

[4]

Emmanuele DiBenedetto, "Degerate Parabolic Equation," Springer-Verlag, 1991.

[5]

James Eells, The surfaces of Delaunay, Math. Intelligencer, 9 (1987), 53-57. doi: 10.1007/BF03023575.

[6]

Alberto Farina, Berardino Sciunzi and Enrico Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741-791.

[7]

Alberto Farina and Enrico Valdinoci, Geometry of quasiminimal phase transitions, Calc. Var. Partial Differ. Equ., 33 (2008), 1-35. doi: 10.1007/s00526-007-0146-1.

[8]

Alberto Farina and Enrico Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature, Adv. Math., 225 (2010), 2808-2827. doi: 10.1016/j.aim.2010.05.008.

[9]

Alberto Farina and Enrico Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal., 195 (2010), 1025-1058. doi: 10.1007/s00205-009-0227-8.

[10]

David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, volume 224 of "Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]," Springer-Verlag, Berlin, second edition, 1983.

[11]

Lars Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Reprint of the second (1990) edition. Classics in Mathematics. Springer-Verlag, Berlin, 2003.

[12]

Lars Hörmander, "The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients," Reprint of the 1983 original. Classics in Mathematics. Springer-Verlag, Berlin, 2005.

[13]

Bernd Kawohl, "Symmetrization-or how to Prove Symmetry of Solutions to a PDE," Partial differential equations (Praha, 1998), 214-229, Res. Notes Math., 406, Chapman & Hall/CRC, Boca Raton, FL, 2000.

[14]

Olga A. Ladyzhenskaya and Nina N. Ural'tseva, "Linear and Quasilinear Elliptic Equations," translated from the Russian by Scripta Technica, Academic Press, New York-London, 1968.

[15]

Gary M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3.

[16]

Rafael de la Llave and Enrico Valdinoci, Ground states and critical points for generalized Frankel-Kontorova models in $Z^d$, Nonlinearity, 20 (2007), 2409-2424. doi: 10.1088/0951-7715/20/10/008.

[17]

Luciano Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684. doi: 10.1002/cpa.3160380515.

[18]

Lawrence E. Payne, Some remarks on maximum principles, J. Analyse Math., 30 (1976), 421-433. doi: 10.1007/BF02786729.

[19]

Patrizia Pucci and James Serrin, "The Maximum Principle," Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007.

[20]

Renè P. Sperb, "Maximum Principles and Their Applications," volume 157 of Mathematics in Science and Engineering. Academic Press Inc, [Harcourt Brace Jovanovich Publishers], New York, 1981.

[21]

Gudlaugur Thorbergsson, A survey on isoparametric hypersurfaces and their generalizations, Handbook of differential geometry, Vol. I, 963-995, North-Holland, Amsterdam, 2000.

[1]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[2]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[3]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[4]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[5]

Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1883-1898. doi: 10.3934/dcdss.2020148

[6]

Théophile Chaumont-Frelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2445-2471. doi: 10.3934/cpaa.2020107

[7]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control and Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014

[8]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[9]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[10]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[11]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[12]

Henrik Garde, Nuutti Hyvönen. Reconstruction of singular and degenerate inclusions in Calderón's problem. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022021

[13]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[14]

Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507

[15]

Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010

[16]

Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

[17]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[18]

Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5105-5139. doi: 10.3934/dcds.2021070

[19]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks and Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[20]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (6)

[Back to Top]