Citation: |
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu, "Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equation with Inequality Constraints," Memoirs of AMS, 196, No. 915, 2008. |
[2] |
H. Berestycki and D. G. deFigueiredo, Double resonance is semilinear elliptic problems, Comm. Partial Diff. Equas., 6 (1981), 91-120.doi: 10.1080/03605308108820172. |
[3] |
N. P. Cac, On an elliptic boundary value problem at double resonance, J. Math. Anal. Appl., 132 (1988), 473-483.doi: 10.1016/0022-247X(88)90075-3. |
[4] |
K. C. Chang, "Infinite Dimensional Morse Theory and Multiple Solution Problems," Birkhauser, Boston, 1993. |
[5] |
F. Clarke, "Optimization and Nonsmooth Analysis," Wiley, New York, 1983. |
[6] |
Y. Deng, S. Peng and L. Wang, Existence of multiple solutions for a nonhomogeneous semilinear elliptic equatio involving critical exponent, Discrete Contin. Dynam. Systems, 32 (2012), 795-826. |
[7] |
D. G. deFigueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Diff. Equas., 17 (1992), 339-346.doi: 10.1080/03605309208820844. |
[8] |
M. Filippakis, D. O'Regan and N. S. Papageorgiou, Positive solutions and bifurcation phenomena for nonlinear elliptic equations of Logistic type:The superdiffusive case, Comm. Pure Appl. Anal., 9 (2010), 1507-1527.doi: 10.3934/cpaa.2010.9.1507. |
[9] |
M. Filippakis and N. S. Papageorgiou, Multiplicity of solutions for doubly resonant Neumann problem, Bull. Belgian Math. Soc., 18 (2011), 135-156. |
[10] |
Z. Guo, Z. Liu, J. Wei and F. Zhou, Bifurcations of some elliptic problems with a singular nonlinearity via Morse index, Comm. Pure. Appl. Anal., 10 (2011), 507-525.doi: 10.3934/cpaa.2011.10.507. |
[11] |
N. Garofalo and F. H. Lin, Unique continuation for elliptic operators: A geometric variatoinal approach, Comm. Pure Appl. Math., 40 (1987), 347-366. |
[12] |
L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis," Chapman & Hall/CRC, Boca Raton, 2006. |
[13] |
J. Garcia Melian, J. Rossi and J. Sabina de Lis, A convex-concave problem with a parameter on the boundary condition, Discrete Contin. Dynam. Systems, 32 (2012), 1095-1124. |
[14] |
Q. Jiu and J. Su, Existence and multiplicity results for perturbations of the $p$-Laplacian, J. Math. Anal. Appl., 281 (2003), 587-601.doi: 10.1016/S0022-247X(03)00165-3. |
[15] |
Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009), 147-158.doi: 10.1016/j.jmaa.2008.12.053. |
[16] |
M. L. Miotto, Multiple solutions for elliptic problems in $R^N$ with critical Spbolev exponent and weight function, Comm. Pure Appl. Anal., 9 (2010), 233-248.doi: 10.3934/cpaa.2010.9.233. |
[17] |
D. Motreanu, D. O'Regan and N. S. Papageorgiou, A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems, Comm. Pure Appl. Anal., 10 (2011), 1791-1816.doi: 10.3934/cpaa.2011.10.1791. |
[18] |
N. S. Papageorgiou and S. Th. Kyritsi, "Handbook of Applied Analysis," Springer, New York, 2009. |
[19] |
J-M. Rakotoson, Generalized eigenvalue problem for totally discontinuous operator, Discrete Contin. Dynam. Systems, 28 (2010), 343-373.doi: 10.3934/dcds.2010.28.343. |
[20] |
P. Pucci and J. Serrin, "The Maximum Principle," Birkhauser, Basel, 2007. |
[21] |
S. Robinson, Double resonance in semilinear elliptic boundary value problem over bounded and unbounded domain, Nonlin. Anal., 21 (1993), 407-424.doi: 10.1016/0362-546X(93)90125-C. |
[22] |
R. Showalter, "Hilbert Space Methods for Partial Differential Equations," Pitman, London, 1977. |
[23] | |
[24] |
J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlinear Anal., 48 (2002), 881-895.doi: 10.1016/S0362-546X(00)00221-2. |
[25] |
W. Zou, Multiple solutions for elliptic equations with resonance, Nonlinear Anal., 48 (2002), 363-376.doi: 10.1016/S0362-546X(00)00190-5. |