September  2012, 11(5): 2147-2156. doi: 10.3934/cpaa.2012.11.2147

Blow-up for the heat equation with a general memory boundary condition

1. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010

2. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, United States

Received  March 2011 Revised  November 2011 Published  March 2012

In this paper, we study the long-time behavior of nonnegative solutions of the heat equation with a general memory boundary condition. We first present conditions on the memory term for finite time blow-up. We then establish global existence results through both analytical and numerical methods. Finally, we show that under certain conditions blow-up occurs only on the boundary.
Citation: Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147
References:
[1]

J. R. Anderson, K. Deng and Z. Dong, Global solvability for the heat equation with boundary flux governed by nonlinear memory, Quart. Appl. Math., 69 (2011), 759-770. doi: 10.1090/S0033-569X-2011-01238-X.  Google Scholar

[2]

M. Ciarletta, A differential problem for heat equation with a boundary condition with memory, Appl. Math. Letters, 10 (1997), 95-101. doi: 10.1016/S0893-9659(96)00118-8.  Google Scholar

[3]

K. Deng and M. Xu, On solutions of a singular diffusion equation, Nonlinear Anal., 41 (2000), 489-500. doi: 10.1016/S0362-546X(98)00292-2.  Google Scholar

[4]

M. Fabrizio and A. Morro, A boundary condition with memory in electromagnetism, Arch. Rational Mech. Anal., 136 (1996), 359-381. doi: 10.1007/BF02206624.  Google Scholar

[5]

R. Ferreira, P. Groisman and J. D. Rossi, Numerical blow-up for a nonlinear problem with a nonlinear boundary condition, Math. Models Methods Appl. Sci., 12 (2002), 461-483. doi: 10.1142/S021820250200174X.  Google Scholar

[6]

B. Hu and H.-M. Yin, The profile near blowup time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346 (1994), 117-135. doi: 10.2307/2154944.  Google Scholar

[7]

B. Hu and H.-M. Yin, Critical exponents for a system of heat equations coupled in a non-linear boundary condition, Math. Methods Appl. Sci., 19 (1996), 1099-1120. doi: 10.1002/(SICI)1099-1476(19960925)19:14<1099::AID-MMA780>3.0.CO;2-J.  Google Scholar

[8]

H. A. Levine, S. Pamuk, B. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma, Bull. Math. Biol., 63 (2001), 801-863. doi: 10.1006/bulm.2001.0240.  Google Scholar

[9]

H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differential Equations, 16 (1974), 319-334. doi: 10.1016/0022-0396(74)90018-7.  Google Scholar

[10]

J. López-Gómez, V. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition, J. Differential Equations, 92 (1991), 384-401.  Google Scholar

[11]

L. E. Payne and P. W. Schaefer, Bounds for blow-up time for the heat equation under nonlinear boundary conditions, Proc. Royal Soc. Edinburgh Sect. A, 139 (2009), 1289-1296. doi: 10.1017/S0308210508000802.  Google Scholar

[12]

D. F. Rial and J. D. Rossi, Blow-up results and localization of blow-up points in an N-dimensional smooth domain, Duke Math. J., 88 (1997), 391-405. doi: 10.1215/S0012-7094-97-08816-5.  Google Scholar

[13]

W. Walter, On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition, SIAM J. Math. Anal., 6 (1975), 85-90. doi: 10.1137/0506008.  Google Scholar

[14]

M. X. Wang and Y. H. Wu, Global existence and blow up problems for quasilinear parabolic equations with nonlinear boundary conditions, SIAM J. Math. Anal., 24 (1993), 1515-1521. doi: 10.1137/0524085.  Google Scholar

show all references

References:
[1]

J. R. Anderson, K. Deng and Z. Dong, Global solvability for the heat equation with boundary flux governed by nonlinear memory, Quart. Appl. Math., 69 (2011), 759-770. doi: 10.1090/S0033-569X-2011-01238-X.  Google Scholar

[2]

M. Ciarletta, A differential problem for heat equation with a boundary condition with memory, Appl. Math. Letters, 10 (1997), 95-101. doi: 10.1016/S0893-9659(96)00118-8.  Google Scholar

[3]

K. Deng and M. Xu, On solutions of a singular diffusion equation, Nonlinear Anal., 41 (2000), 489-500. doi: 10.1016/S0362-546X(98)00292-2.  Google Scholar

[4]

M. Fabrizio and A. Morro, A boundary condition with memory in electromagnetism, Arch. Rational Mech. Anal., 136 (1996), 359-381. doi: 10.1007/BF02206624.  Google Scholar

[5]

R. Ferreira, P. Groisman and J. D. Rossi, Numerical blow-up for a nonlinear problem with a nonlinear boundary condition, Math. Models Methods Appl. Sci., 12 (2002), 461-483. doi: 10.1142/S021820250200174X.  Google Scholar

[6]

B. Hu and H.-M. Yin, The profile near blowup time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346 (1994), 117-135. doi: 10.2307/2154944.  Google Scholar

[7]

B. Hu and H.-M. Yin, Critical exponents for a system of heat equations coupled in a non-linear boundary condition, Math. Methods Appl. Sci., 19 (1996), 1099-1120. doi: 10.1002/(SICI)1099-1476(19960925)19:14<1099::AID-MMA780>3.0.CO;2-J.  Google Scholar

[8]

H. A. Levine, S. Pamuk, B. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma, Bull. Math. Biol., 63 (2001), 801-863. doi: 10.1006/bulm.2001.0240.  Google Scholar

[9]

H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differential Equations, 16 (1974), 319-334. doi: 10.1016/0022-0396(74)90018-7.  Google Scholar

[10]

J. López-Gómez, V. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition, J. Differential Equations, 92 (1991), 384-401.  Google Scholar

[11]

L. E. Payne and P. W. Schaefer, Bounds for blow-up time for the heat equation under nonlinear boundary conditions, Proc. Royal Soc. Edinburgh Sect. A, 139 (2009), 1289-1296. doi: 10.1017/S0308210508000802.  Google Scholar

[12]

D. F. Rial and J. D. Rossi, Blow-up results and localization of blow-up points in an N-dimensional smooth domain, Duke Math. J., 88 (1997), 391-405. doi: 10.1215/S0012-7094-97-08816-5.  Google Scholar

[13]

W. Walter, On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition, SIAM J. Math. Anal., 6 (1975), 85-90. doi: 10.1137/0506008.  Google Scholar

[14]

M. X. Wang and Y. H. Wu, Global existence and blow up problems for quasilinear parabolic equations with nonlinear boundary conditions, SIAM J. Math. Anal., 24 (1993), 1515-1521. doi: 10.1137/0524085.  Google Scholar

[1]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[2]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[3]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[4]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[5]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[6]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[7]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[8]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[9]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[10]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[11]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[12]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[13]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[14]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[15]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[16]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[17]

Mingzhu Wu, Zuodong Yang. Existence of boundary blow-up solutions for a class of quasiliner elliptic systems for the subcritical case. Communications on Pure & Applied Analysis, 2007, 6 (2) : 531-540. doi: 10.3934/cpaa.2007.6.531

[18]

Jorge García-Melián, Julio D. Rossi, José C. Sabina de Lis. Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 549-562. doi: 10.3934/cpaa.2016.15.549

[19]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[20]

Kazuyuki Yagasaki. Existence of finite time blow-up solutions in a normal form of the subcritical Hopf bifurcation with time-delayed feedback for small initial functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021151

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]