\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Blow-up for the heat equation with a general memory boundary condition

Abstract Related Papers Cited by
  • In this paper, we study the long-time behavior of nonnegative solutions of the heat equation with a general memory boundary condition. We first present conditions on the memory term for finite time blow-up. We then establish global existence results through both analytical and numerical methods. Finally, we show that under certain conditions blow-up occurs only on the boundary.
    Mathematics Subject Classification: Primary: 35B44, 35K05, 35K20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. R. Anderson, K. Deng and Z. Dong, Global solvability for the heat equation with boundary flux governed by nonlinear memory, Quart. Appl. Math., 69 (2011), 759-770.doi: 10.1090/S0033-569X-2011-01238-X.

    [2]

    M. Ciarletta, A differential problem for heat equation with a boundary condition with memory, Appl. Math. Letters, 10 (1997), 95-101.doi: 10.1016/S0893-9659(96)00118-8.

    [3]

    K. Deng and M. Xu, On solutions of a singular diffusion equation, Nonlinear Anal., 41 (2000), 489-500.doi: 10.1016/S0362-546X(98)00292-2.

    [4]

    M. Fabrizio and A. Morro, A boundary condition with memory in electromagnetism, Arch. Rational Mech. Anal., 136 (1996), 359-381.doi: 10.1007/BF02206624.

    [5]

    R. Ferreira, P. Groisman and J. D. Rossi, Numerical blow-up for a nonlinear problem with a nonlinear boundary condition, Math. Models Methods Appl. Sci., 12 (2002), 461-483.doi: 10.1142/S021820250200174X.

    [6]

    B. Hu and H.-M. Yin, The profile near blowup time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346 (1994), 117-135.doi: 10.2307/2154944.

    [7]

    B. Hu and H.-M. Yin, Critical exponents for a system of heat equations coupled in a non-linear boundary condition, Math. Methods Appl. Sci., 19 (1996), 1099-1120.doi: 10.1002/(SICI)1099-1476(19960925)19:14<1099::AID-MMA780>3.0.CO;2-J.

    [8]

    H. A. Levine, S. Pamuk, B. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma, Bull. Math. Biol., 63 (2001), 801-863.doi: 10.1006/bulm.2001.0240.

    [9]

    H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differential Equations, 16 (1974), 319-334.doi: 10.1016/0022-0396(74)90018-7.

    [10]

    J. López-Gómez, V. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition, J. Differential Equations, 92 (1991), 384-401.

    [11]

    L. E. Payne and P. W. Schaefer, Bounds for blow-up time for the heat equation under nonlinear boundary conditions, Proc. Royal Soc. Edinburgh Sect. A, 139 (2009), 1289-1296.doi: 10.1017/S0308210508000802.

    [12]

    D. F. Rial and J. D. Rossi, Blow-up results and localization of blow-up points in an N-dimensional smooth domain, Duke Math. J., 88 (1997), 391-405.doi: 10.1215/S0012-7094-97-08816-5.

    [13]

    W. Walter, On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition, SIAM J. Math. Anal., 6 (1975), 85-90.doi: 10.1137/0506008.

    [14]

    M. X. Wang and Y. H. Wu, Global existence and blow up problems for quasilinear parabolic equations with nonlinear boundary conditions, SIAM J. Math. Anal., 24 (1993), 1515-1521.doi: 10.1137/0524085.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return