November  2012, 11(6): 2291-2303. doi: 10.3934/cpaa.2012.11.2291

The annulus as a K-spectral set

1. 

Institut de Recherche Mathématique de Rennes, UMR no. 6625, Université de Rennes 1, Campus de Beaulieu, 35042 RENNES Cedex

Received  March 2010 Revised  March 2010 Published  April 2012

We consider the annulus $\mathcal{A}_R$ of complex numbers with modulus and inverse of modulus bounded by $R>1$. We present some situations, in which this annulus is a K-spectral set for an operator $A$, and some related estimates.
Citation: Michel Crouzeix. The annulus as a K-spectral set. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2291-2303. doi: 10.3934/cpaa.2012.11.2291
References:
[1]

K. Okubo and T. Ando, Constants related to operators of class $C_\rho$, Manuscripta Math., 16 (1975), 385-394. doi: 10.1007/BF01323467.

[2]

C. Badea, B. Beckermann and M. Crouzeix, Intersections of several disks of the Riemann sphere as $K$-spectral sets, Com. Pure Appl. Anal., 8 (2009), 37-54.

[3]

W. F. Donoghue, On a problem of Nieminen, Inst. Hautes Etudes Sci. Publ. Math., 16 (1963), 31-33. doi: 10.1007/BF02684290.

[4]

R. G. Douglas and V. I. Paulsen, Completely bounded maps and hypo-Dirichlet algebras, Acta Sci. Math. (Szeged), 50 (1986), 143-157.

[5]

J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., 4 (1951), 258-281.

[6]

V. I. Paulsen, Toward a theory of $K$-spectral sets, in "Surveys of Some Recent Results in Operator Theory,'' Vol. I, 221-240, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988.

[7]

V. I. Paulsen, "Completely Bounded Maps and Operator Algebras,'' Cambridge Studies in Advanced Mathematics, 78. Cambridge University Press, Cambridge, 2002.

[8]

V. I. Paulsen and D. Singh, Extensions of Bohr's inequality, Bull. London Math. Soc., 38 (2006), 991-999. doi: 10.1112/S0024609306019084.

[9]

A. L. Shields, Weighted shift operators and analytic function theory, in "Topics in Operator Theory," pp. 49-128. Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974.

[10]

J. G. Stampfli, Minimal range theorems for operators with thin spectra, Pacific Journal of Math., 23 (1967), 601-612.

show all references

References:
[1]

K. Okubo and T. Ando, Constants related to operators of class $C_\rho$, Manuscripta Math., 16 (1975), 385-394. doi: 10.1007/BF01323467.

[2]

C. Badea, B. Beckermann and M. Crouzeix, Intersections of several disks of the Riemann sphere as $K$-spectral sets, Com. Pure Appl. Anal., 8 (2009), 37-54.

[3]

W. F. Donoghue, On a problem of Nieminen, Inst. Hautes Etudes Sci. Publ. Math., 16 (1963), 31-33. doi: 10.1007/BF02684290.

[4]

R. G. Douglas and V. I. Paulsen, Completely bounded maps and hypo-Dirichlet algebras, Acta Sci. Math. (Szeged), 50 (1986), 143-157.

[5]

J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., 4 (1951), 258-281.

[6]

V. I. Paulsen, Toward a theory of $K$-spectral sets, in "Surveys of Some Recent Results in Operator Theory,'' Vol. I, 221-240, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988.

[7]

V. I. Paulsen, "Completely Bounded Maps and Operator Algebras,'' Cambridge Studies in Advanced Mathematics, 78. Cambridge University Press, Cambridge, 2002.

[8]

V. I. Paulsen and D. Singh, Extensions of Bohr's inequality, Bull. London Math. Soc., 38 (2006), 991-999. doi: 10.1112/S0024609306019084.

[9]

A. L. Shields, Weighted shift operators and analytic function theory, in "Topics in Operator Theory," pp. 49-128. Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974.

[10]

J. G. Stampfli, Minimal range theorems for operators with thin spectra, Pacific Journal of Math., 23 (1967), 601-612.

[1]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004

[2]

Claude Carlet. Expressing the minimum distance, weight distribution and covering radius of codes by means of the algebraic and numerical normal forms of their indicators. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022047

[3]

Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1

[4]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial and Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial and Management Optimization, 2022, 18 (1) : 575-592. doi: 10.3934/jimo.2020169

[6]

Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232

[7]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[8]

Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3977-3991. doi: 10.3934/dcds.2018173

[9]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[10]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[11]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[12]

Zeyu Xia, Xiaofeng Yang. A second order accuracy in time, Fourier pseudo-spectral numerical scheme for "Good" Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3749-3763. doi: 10.3934/dcdsb.2020089

[13]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[14]

Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381

[15]

Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143

[16]

Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447

[17]

Alan Elcrat, Ray Treinen. Numerical results for floating drops. Conference Publications, 2005, 2005 (Special) : 241-249. doi: 10.3934/proc.2005.2005.241

[18]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[19]

Marx Chhay, Aziz Hamdouni. On the accuracy of invariant numerical schemes. Communications on Pure and Applied Analysis, 2011, 10 (2) : 761-783. doi: 10.3934/cpaa.2011.10.761

[20]

Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (121)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]