-
Previous Article
Diffusion limit for a stochastic kinetic problem
- CPAA Home
- This Issue
-
Next Article
Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions
The annulus as a K-spectral set
1. | Institut de Recherche Mathématique de Rennes, UMR no. 6625, Université de Rennes 1, Campus de Beaulieu, 35042 RENNES Cedex |
References:
[1] |
K. Okubo and T. Ando, Constants related to operators of class $C_\rho$, Manuscripta Math., 16 (1975), 385-394.
doi: 10.1007/BF01323467. |
[2] |
C. Badea, B. Beckermann and M. Crouzeix, Intersections of several disks of the Riemann sphere as $K$-spectral sets, Com. Pure Appl. Anal., 8 (2009), 37-54. |
[3] |
W. F. Donoghue, On a problem of Nieminen, Inst. Hautes Etudes Sci. Publ. Math., 16 (1963), 31-33.
doi: 10.1007/BF02684290. |
[4] |
R. G. Douglas and V. I. Paulsen, Completely bounded maps and hypo-Dirichlet algebras, Acta Sci. Math. (Szeged), 50 (1986), 143-157. |
[5] |
J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., 4 (1951), 258-281. |
[6] |
V. I. Paulsen, Toward a theory of $K$-spectral sets, in "Surveys of Some Recent Results in Operator Theory,'' Vol. I, 221-240, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988. |
[7] |
V. I. Paulsen, "Completely Bounded Maps and Operator Algebras,'' Cambridge Studies in Advanced Mathematics, 78. Cambridge University Press, Cambridge, 2002. |
[8] |
V. I. Paulsen and D. Singh, Extensions of Bohr's inequality, Bull. London Math. Soc., 38 (2006), 991-999.
doi: 10.1112/S0024609306019084. |
[9] |
A. L. Shields, Weighted shift operators and analytic function theory, in "Topics in Operator Theory," pp. 49-128. Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974. |
[10] |
J. G. Stampfli, Minimal range theorems for operators with thin spectra, Pacific Journal of Math., 23 (1967), 601-612. |
show all references
References:
[1] |
K. Okubo and T. Ando, Constants related to operators of class $C_\rho$, Manuscripta Math., 16 (1975), 385-394.
doi: 10.1007/BF01323467. |
[2] |
C. Badea, B. Beckermann and M. Crouzeix, Intersections of several disks of the Riemann sphere as $K$-spectral sets, Com. Pure Appl. Anal., 8 (2009), 37-54. |
[3] |
W. F. Donoghue, On a problem of Nieminen, Inst. Hautes Etudes Sci. Publ. Math., 16 (1963), 31-33.
doi: 10.1007/BF02684290. |
[4] |
R. G. Douglas and V. I. Paulsen, Completely bounded maps and hypo-Dirichlet algebras, Acta Sci. Math. (Szeged), 50 (1986), 143-157. |
[5] |
J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., 4 (1951), 258-281. |
[6] |
V. I. Paulsen, Toward a theory of $K$-spectral sets, in "Surveys of Some Recent Results in Operator Theory,'' Vol. I, 221-240, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988. |
[7] |
V. I. Paulsen, "Completely Bounded Maps and Operator Algebras,'' Cambridge Studies in Advanced Mathematics, 78. Cambridge University Press, Cambridge, 2002. |
[8] |
V. I. Paulsen and D. Singh, Extensions of Bohr's inequality, Bull. London Math. Soc., 38 (2006), 991-999.
doi: 10.1112/S0024609306019084. |
[9] |
A. L. Shields, Weighted shift operators and analytic function theory, in "Topics in Operator Theory," pp. 49-128. Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974. |
[10] |
J. G. Stampfli, Minimal range theorems for operators with thin spectra, Pacific Journal of Math., 23 (1967), 601-612. |
[1] |
Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004 |
[2] |
Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial and Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975 |
[3] |
Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1 |
[4] |
Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232 |
[5] |
Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22 |
[6] |
Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3977-3991. doi: 10.3934/dcds.2018173 |
[7] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial and Management Optimization, 2022, 18 (1) : 575-592. doi: 10.3934/jimo.2020169 |
[8] |
Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179 |
[9] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[10] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[11] |
Zeyu Xia, Xiaofeng Yang. A second order accuracy in time, Fourier pseudo-spectral numerical scheme for "Good" Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3749-3763. doi: 10.3934/dcdsb.2020089 |
[12] |
Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561 |
[13] |
Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381 |
[14] |
Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143 |
[15] |
Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447 |
[16] |
Alan Elcrat, Ray Treinen. Numerical results for floating drops. Conference Publications, 2005, 2005 (Special) : 241-249. doi: 10.3934/proc.2005.2005.241 |
[17] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[18] |
Marx Chhay, Aziz Hamdouni. On the accuracy of invariant numerical schemes. Communications on Pure and Applied Analysis, 2011, 10 (2) : 761-783. doi: 10.3934/cpaa.2011.10.761 |
[19] |
Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125 |
[20] |
Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure and Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]