November  2012, 11(6): 2327-2349. doi: 10.3934/cpaa.2012.11.2327

Some inverse problems around the tokamak Tore Supra

1. 

INRIA Sophia Antipolis Mediterranee, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis, France

2. 

ENSIMAG, 681, rue de la passerelle, Domaine universitaire, BP 72, 38402 Saint Martin D'Hères, France

3. 

ENS Cachan Bretagne, CNRS, Univ. Rennes 1, IRMAR, av. Robert Schuman, F-35170 Bruz

Received  March 2011 Revised  May 2011 Published  April 2012

We consider two inverse problems related to the tokamak Tore Supra through the study of the magnetostatic equation for the poloidal flux. The first one deals with the Cauchy issue of recovering in a two dimensional annular domain boundary magnetic values on the inner boundary, namely the limiter, from available overdetermined data on the outer boundary. Using tools from complex analysis and properties of genereralized Hardy spaces, we establish stability and existence properties. Secondly the inverse problem of recovering the shape of the plasma is addressed thank tools of shape optimization. Again results about existence and optimality are provided. They give rise to a fast algorithm of identification which is applied to several numerical simulations computing good results either for the classical harmonic case or for the data coming from Tore Supra.
Citation: Yannick Fischer, Benjamin Marteau, Yannick Privat. Some inverse problems around the tokamak Tore Supra. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2327-2349. doi: 10.3934/cpaa.2012.11.2327
References:
[1]

D. Alpay, L. Baratchart and J. Leblond, Some extremal problems linked with identification from a partial frequency data, in "Lectures Notes in Control and Information Science," Springer Verlag, 185 (1993), 563-573. doi: 10.1007/BFb0115054.

[2]

G. Allaire, "Shape Optimization by the Homogenization Method," Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002.

[3]

F. Alladio and F. Crisanti, Analysis of MHD equilibria by toroidal multipolar expansions, Nuclear Fusion, 26 (1986), 1143-1164.

[4]

M. Ariola and A. Pironti, "Magnetic Control of Tokamak Plasmas," Advances in Industrial Control Series, Springer, London, 2008.

[5]

K. Astala and L. Päivärinta, A boundary integral equation for Calderóm's inverse conductivity problem, Proceedings of El Escorial, (2006), 127-139.

[6]

H. Ben Ameur, M. Burger and B. Hackl, Level set methods for geometric inverse problems in linear elasticity, Inverse Problems, 20 (2004), 673-696. doi: 10.1088/0266-5611/20/3/003.

[7]

L. Baratchart and J. Leblond, Hardy approximation to $L^p$ functions on subsets of the circle with $1 \leq p < \infty$, Constructive approximation, 14 (1998), 41-56. doi: 10.1007/s003659900062.

[8]

L. Baratchart, J. Leblond and J. R. Partington, Hardy approximation to $L^{\infty}$ functions on subsets of the circle with $1 \leq p < \infty$, Constructive approximation, 12 (1996), 423-436. doi: 10.1007/s003659900022.

[9]

L. Baratchart, J. Leblond, S. Rigat and E. Russ, Hardy spaces of the conjugate Beltrami equation, Journal of Functional Analysis, 259 (2010), 384-427. doi: 10.1016/j.jfa.2010.04.004.

[10]

B. Beauzamy, "Introduction to Banach Spaces and their Geometry," Mathematics studies, North-Holland, New York, 1985.

[11]

L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale Sulle Equazioni Derivate e Parziali, (1954), 111-138.

[12]

J. Blum, "Numerical Simulation and Optimal Control in Plasma Physics with Applications to Tokamaks," Series in Modern Applied Mathematics, Wiley Gauthier-Villars, Paris, 1989.

[13]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse problem obstacle problem, Inverse Problems and Imaging, 4/3 (2010), 351-377. doi: 10.3934/ipi.2010.4.351.

[14]

M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction, Interfaces and Free Boundaries, 5 (2003), 301-329. doi: 10.4171/IFB/81.

[15]

M. Burger, Levenberg-Marquardt levet set methods for inverse obstacle problem, Inverse Problems, 14 (1998), 685-706. doi: 10.1088/0266-5611/20/1/016.

[16]

S. Campanato, "Elliptic Systems in Divergence Form. Interior Regularity," Quaderni, Scuola Normale Superiore Pisa, 1980.

[17]

S. Chaabane, M. Jaoua and J. Leblond, "Parameter Identification for Laplace Equation and Approximation in Hardy Classes," J. Inverse Ill-Posed Probl, 11 (2003), 33-57. doi: 10.1163/156939403322004928.

[18]

D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., 52 (1975), 189-289.

[19]

F. de Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization, SIAM J. Control Optim., 45 (2006), 343-367. doi: 10.1137/050624108.

[20]

M. Delfour and J. P. Zolésio, "Shapes and Geometries. Analysis, Differential Calculus, and Optimization," Advances in Design and Control SIAM, PA, Philadelphia, 2001.

[21]

G. Dogǧan, P. Morin, R.H. Nochetto and M. Verani, Discrete Gradient Flows for Shape Optimization and Applications, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3898-3914. doi: 10.1016/j.cma.2006.10.046.

[22]

P. L. Duren, "Theory of $H^p$ Spaces," Pure and Applied Mathematics, Academic Press, New York - London, 1970.

[23]

Y. Fischer, J. Leblond, J. R. Partington and E. Sincich, Bounded extremal problems in Hardy spaces for the conjugate Beltrami equations in simply connected domains, Applied and Computational Harmonic Analysis, 31 (2011), 264-285. doi: 10.1016/j.acha.2011.01.003.

[24]

K. Ito, K. Kunisch and G. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems, J. Math. Anal. Appl., 314 (2006) 126-149. doi: 10.1016/j.jmaa.2005.03.100.

[25]

M. Jaoua, J. Leblond, M. Mahjoub and J. R. Partington, Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains, IMA Journal of Applied Mathematics, 74 (2009), 481-506. doi: 10.1093/imamat/hxn041.

[26]

J. Garnett, "Bounded Analytic Functions," Pure and Applied Mathematics, Academic Press, New York - London, 1981.

[27]

H. Haddar and R. Kress, Conformal mappings and inverse boundary value problem, Inverse Problems, 21 (2005), 935-953. doi: 10.1088/0266-5611/21/3/009.

[28]

J. Haslinger, K. Ito, T. Kozubek, K. Kunisch and G. Peichl, On the shape derivative for problems of Bernoulli type, Interfaces Free Bound., 11 (2009), 317-330. doi: 10.4171/IFB/213.

[29]

J. Haslinger, T. Kozubek, K. Kunisch and G. Peichl, Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type, Comput. Optim. Appl., 26 (2003), 231-251. doi: 10.1023/A:1026095405906.

[30]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes," Mathématiques et Applications, Springer, 2005.

[31]

A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the $p$-Laplace operator. I. The exterior convex case, J. Reine Angew. Math., 521 (2000), 85-97. doi: 10.1515/crll.2000.031.

[32]

A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the $p$-Laplace operator. II. The interior convex case, Indiana Univ. Math. J., 49 (2000), 311-323. doi: 10.1512/iumj.2000.49.1711.

[33]

A. Henrot and H. Shahgholian, The one phase free boundary problem for the $p$-Laplacian with non-constant Bernoulli boundary condition, Trans. Amer. Math. Soc., 354 (2002), 2399-2416. doi: 10.1090/S0002-9947-02-02892-1.

[34]

L. Hörmander, Remarks on Holmgren's uniqueness theorem, Annales de l'institut Fourier, 43 (1993), 1223-1251.

[35]

K. Ito, K. Kunisch and G. H. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems, J. Math. Anal. Appl., 314 (2006), 126-149. doi: 10.1016/j.jmaa.2005.03.100.

[36]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace's equations, SIAM J. Appl. Math., 51 (1991), 1653-1675. doi: 10.1137/0151085.

[37]

V. A. Kozlov, V. G. Maz'ya and A. V. Fomin, An iterative method for solving the cauchy problem for elliptic equation, Comput. Math. Phys., 31 (1991), 45-52.

[38]

R. Kress, "Linear Integral Equations," 2nd edn Berlin, Springer, 1999.

[39]

R. Kress, Inverse Dirichlet problem and conformal mapping, Math. Comput. Simul., 66 (2004), 255-265. doi: 10.1016/j.matcom.2004.02.006.

[40]

R. Lattès and J. L. Lions, "Méthode de Quasi-réversibilité et Applications," Dunod, 1967.

[41]

A. Laurain and Y. Privat, On a Bernoulli problem with geometric constraints, ESAIM Control Optim. Calc. Var., 18 (2012), 157-180. doi: 10.1016/j.matcom.2004.02.006.

[42]

E. Lindgren and Y. Privat, A free boundary problem for the Laplacian with a constant Bernoulli-type boundary condition, Nonlinear Anal., 67 (2007), 2497-2505. doi: 10.1016/j.na.2006.08.045.

[43]

F. Murat and J. Simon, "Sur le contrôle par un domaine géométrique," Publication du Laboratoire d'Analyse Numérique de l'Université Paris 6, 189, 1976.

[44]

B. Protas, T-R Bewley and G. Hagen, A computational framework for the regularization of adjoint analysis in multiscale pde systems, J. Comput. Phys., 195 (2004), 49-89. doi: 10.1016/j.jcp.2003.08.031.

[45]

W. Rundell, Recovering an obstacle using integral equations, Inverse Problems and Imaging, 3/2 (2009), 319-332. doi: 10.3934/ipi.2009.3.319.

[46]

F. Saint-Laurent and G. Martin, Real time determination and control of the plasma localisation and internal inductance in Tore Supra, Fusion Engineering and Design, 56-57 (2001), 761-765.

[47]

V. D. Shafranov, On magnetohydrodynamical equilibrium configurations, Soviet Physics JETP, 6 (1958), 545-554.

[48]

J. Sokolowski and J. P. Zolesio, "Introduction to Shape Optimization Shape Sensitivity Analysis," Oxford Engineering Science Series, Clarendon Press, Oxford, 1987.

[49]

A. N. Tikhonov and V. Y. Arsenin, "Solutions of Ill-Posed Problems," Winstons and Sons, 1977.

[50]

J. Wesson, "Tokamaks," Series in Computational Mathematics, Springer, Berlin, 1992.

show all references

References:
[1]

D. Alpay, L. Baratchart and J. Leblond, Some extremal problems linked with identification from a partial frequency data, in "Lectures Notes in Control and Information Science," Springer Verlag, 185 (1993), 563-573. doi: 10.1007/BFb0115054.

[2]

G. Allaire, "Shape Optimization by the Homogenization Method," Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002.

[3]

F. Alladio and F. Crisanti, Analysis of MHD equilibria by toroidal multipolar expansions, Nuclear Fusion, 26 (1986), 1143-1164.

[4]

M. Ariola and A. Pironti, "Magnetic Control of Tokamak Plasmas," Advances in Industrial Control Series, Springer, London, 2008.

[5]

K. Astala and L. Päivärinta, A boundary integral equation for Calderóm's inverse conductivity problem, Proceedings of El Escorial, (2006), 127-139.

[6]

H. Ben Ameur, M. Burger and B. Hackl, Level set methods for geometric inverse problems in linear elasticity, Inverse Problems, 20 (2004), 673-696. doi: 10.1088/0266-5611/20/3/003.

[7]

L. Baratchart and J. Leblond, Hardy approximation to $L^p$ functions on subsets of the circle with $1 \leq p < \infty$, Constructive approximation, 14 (1998), 41-56. doi: 10.1007/s003659900062.

[8]

L. Baratchart, J. Leblond and J. R. Partington, Hardy approximation to $L^{\infty}$ functions on subsets of the circle with $1 \leq p < \infty$, Constructive approximation, 12 (1996), 423-436. doi: 10.1007/s003659900022.

[9]

L. Baratchart, J. Leblond, S. Rigat and E. Russ, Hardy spaces of the conjugate Beltrami equation, Journal of Functional Analysis, 259 (2010), 384-427. doi: 10.1016/j.jfa.2010.04.004.

[10]

B. Beauzamy, "Introduction to Banach Spaces and their Geometry," Mathematics studies, North-Holland, New York, 1985.

[11]

L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale Sulle Equazioni Derivate e Parziali, (1954), 111-138.

[12]

J. Blum, "Numerical Simulation and Optimal Control in Plasma Physics with Applications to Tokamaks," Series in Modern Applied Mathematics, Wiley Gauthier-Villars, Paris, 1989.

[13]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse problem obstacle problem, Inverse Problems and Imaging, 4/3 (2010), 351-377. doi: 10.3934/ipi.2010.4.351.

[14]

M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction, Interfaces and Free Boundaries, 5 (2003), 301-329. doi: 10.4171/IFB/81.

[15]

M. Burger, Levenberg-Marquardt levet set methods for inverse obstacle problem, Inverse Problems, 14 (1998), 685-706. doi: 10.1088/0266-5611/20/1/016.

[16]

S. Campanato, "Elliptic Systems in Divergence Form. Interior Regularity," Quaderni, Scuola Normale Superiore Pisa, 1980.

[17]

S. Chaabane, M. Jaoua and J. Leblond, "Parameter Identification for Laplace Equation and Approximation in Hardy Classes," J. Inverse Ill-Posed Probl, 11 (2003), 33-57. doi: 10.1163/156939403322004928.

[18]

D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., 52 (1975), 189-289.

[19]

F. de Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization, SIAM J. Control Optim., 45 (2006), 343-367. doi: 10.1137/050624108.

[20]

M. Delfour and J. P. Zolésio, "Shapes and Geometries. Analysis, Differential Calculus, and Optimization," Advances in Design and Control SIAM, PA, Philadelphia, 2001.

[21]

G. Dogǧan, P. Morin, R.H. Nochetto and M. Verani, Discrete Gradient Flows for Shape Optimization and Applications, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3898-3914. doi: 10.1016/j.cma.2006.10.046.

[22]

P. L. Duren, "Theory of $H^p$ Spaces," Pure and Applied Mathematics, Academic Press, New York - London, 1970.

[23]

Y. Fischer, J. Leblond, J. R. Partington and E. Sincich, Bounded extremal problems in Hardy spaces for the conjugate Beltrami equations in simply connected domains, Applied and Computational Harmonic Analysis, 31 (2011), 264-285. doi: 10.1016/j.acha.2011.01.003.

[24]

K. Ito, K. Kunisch and G. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems, J. Math. Anal. Appl., 314 (2006) 126-149. doi: 10.1016/j.jmaa.2005.03.100.

[25]

M. Jaoua, J. Leblond, M. Mahjoub and J. R. Partington, Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains, IMA Journal of Applied Mathematics, 74 (2009), 481-506. doi: 10.1093/imamat/hxn041.

[26]

J. Garnett, "Bounded Analytic Functions," Pure and Applied Mathematics, Academic Press, New York - London, 1981.

[27]

H. Haddar and R. Kress, Conformal mappings and inverse boundary value problem, Inverse Problems, 21 (2005), 935-953. doi: 10.1088/0266-5611/21/3/009.

[28]

J. Haslinger, K. Ito, T. Kozubek, K. Kunisch and G. Peichl, On the shape derivative for problems of Bernoulli type, Interfaces Free Bound., 11 (2009), 317-330. doi: 10.4171/IFB/213.

[29]

J. Haslinger, T. Kozubek, K. Kunisch and G. Peichl, Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type, Comput. Optim. Appl., 26 (2003), 231-251. doi: 10.1023/A:1026095405906.

[30]

A. Henrot and M. Pierre, "Variation et Optimisation de Formes," Mathématiques et Applications, Springer, 2005.

[31]

A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the $p$-Laplace operator. I. The exterior convex case, J. Reine Angew. Math., 521 (2000), 85-97. doi: 10.1515/crll.2000.031.

[32]

A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the $p$-Laplace operator. II. The interior convex case, Indiana Univ. Math. J., 49 (2000), 311-323. doi: 10.1512/iumj.2000.49.1711.

[33]

A. Henrot and H. Shahgholian, The one phase free boundary problem for the $p$-Laplacian with non-constant Bernoulli boundary condition, Trans. Amer. Math. Soc., 354 (2002), 2399-2416. doi: 10.1090/S0002-9947-02-02892-1.

[34]

L. Hörmander, Remarks on Holmgren's uniqueness theorem, Annales de l'institut Fourier, 43 (1993), 1223-1251.

[35]

K. Ito, K. Kunisch and G. H. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems, J. Math. Anal. Appl., 314 (2006), 126-149. doi: 10.1016/j.jmaa.2005.03.100.

[36]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace's equations, SIAM J. Appl. Math., 51 (1991), 1653-1675. doi: 10.1137/0151085.

[37]

V. A. Kozlov, V. G. Maz'ya and A. V. Fomin, An iterative method for solving the cauchy problem for elliptic equation, Comput. Math. Phys., 31 (1991), 45-52.

[38]

R. Kress, "Linear Integral Equations," 2nd edn Berlin, Springer, 1999.

[39]

R. Kress, Inverse Dirichlet problem and conformal mapping, Math. Comput. Simul., 66 (2004), 255-265. doi: 10.1016/j.matcom.2004.02.006.

[40]

R. Lattès and J. L. Lions, "Méthode de Quasi-réversibilité et Applications," Dunod, 1967.

[41]

A. Laurain and Y. Privat, On a Bernoulli problem with geometric constraints, ESAIM Control Optim. Calc. Var., 18 (2012), 157-180. doi: 10.1016/j.matcom.2004.02.006.

[42]

E. Lindgren and Y. Privat, A free boundary problem for the Laplacian with a constant Bernoulli-type boundary condition, Nonlinear Anal., 67 (2007), 2497-2505. doi: 10.1016/j.na.2006.08.045.

[43]

F. Murat and J. Simon, "Sur le contrôle par un domaine géométrique," Publication du Laboratoire d'Analyse Numérique de l'Université Paris 6, 189, 1976.

[44]

B. Protas, T-R Bewley and G. Hagen, A computational framework for the regularization of adjoint analysis in multiscale pde systems, J. Comput. Phys., 195 (2004), 49-89. doi: 10.1016/j.jcp.2003.08.031.

[45]

W. Rundell, Recovering an obstacle using integral equations, Inverse Problems and Imaging, 3/2 (2009), 319-332. doi: 10.3934/ipi.2009.3.319.

[46]

F. Saint-Laurent and G. Martin, Real time determination and control of the plasma localisation and internal inductance in Tore Supra, Fusion Engineering and Design, 56-57 (2001), 761-765.

[47]

V. D. Shafranov, On magnetohydrodynamical equilibrium configurations, Soviet Physics JETP, 6 (1958), 545-554.

[48]

J. Sokolowski and J. P. Zolesio, "Introduction to Shape Optimization Shape Sensitivity Analysis," Oxford Engineering Science Series, Clarendon Press, Oxford, 1987.

[49]

A. N. Tikhonov and V. Y. Arsenin, "Solutions of Ill-Posed Problems," Winstons and Sons, 1977.

[50]

J. Wesson, "Tokamaks," Series in Computational Mathematics, Springer, Berlin, 1992.

[1]

Laurent Baratchart, Sylvain Chevillard, Douglas Hardin, Juliette Leblond, Eduardo Andrade Lima, Jean-Paul Marmorat. Magnetic moment estimation and bounded extremal problems. Inverse Problems and Imaging, 2019, 13 (1) : 39-67. doi: 10.3934/ipi.2019003

[2]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial and Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[3]

Yaoping Chen, Jianqing Chen. Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1531-1552. doi: 10.3934/cpaa.2017073

[4]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 1-21. doi: 10.3934/dcdss.2021006

[5]

Luigi Montoro. On the shape of the least-energy solutions to some singularly perturbed mixed problems. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1731-1752. doi: 10.3934/cpaa.2010.9.1731

[6]

Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial and Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171

[7]

Guanghui Zhou, Qin Ni, Meilan Zeng. A scaled conjugate gradient method with moving asymptotes for unconstrained optimization problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 595-608. doi: 10.3934/jimo.2016034

[8]

El-Sayed M.E. Mostafa. A nonlinear conjugate gradient method for a special class of matrix optimization problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 883-903. doi: 10.3934/jimo.2014.10.883

[9]

Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems and Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37

[10]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[11]

Yongge Tian. A survey on rank and inertia optimization problems of the matrix-valued function $A + BXB^{*}$. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 289-326. doi: 10.3934/naco.2015.5.289

[12]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[13]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations and Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[14]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems and Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[15]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[16]

Steve Hofmann, Dorina Mitrea, Marius Mitrea, Andrew J. Morris. Square function estimates in spaces of homogeneous type and on uniformly rectifiable Euclidean sets. Electronic Research Announcements, 2014, 21: 8-18. doi: 10.3934/era.2014.21.8

[17]

Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks and Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633

[18]

Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4347-4377. doi: 10.3934/cpaa.2021163

[19]

Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2971-2989. doi: 10.3934/jimo.2019089

[20]

Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (116)
  • HTML views (0)
  • Cited by (4)

[Back to Top]