\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some applications of the Łojasiewicz gradient inequality

Abstract Related Papers Cited by
  • In the present survey paper, basic convergence results for gradient-like systems relying on the Łojasiewicz gradient inequality are recalled in a self-contained way. A uniform version of the gradient inequality is used to get directly convergence and the rate of convergence in one step and a new technical trick, consisting in the evaluation of the integral of the velocity norm from $t$ to $2t$ is introduced. A short idea of the state of the art without technical details is also given.
    Mathematics Subject Classification: 34D05, 34D20, 34G20, 37B25, 37L15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P.-A. Absil, R. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547.

    [2]

    I. Ben Hassen, Decay estimates to equilibrium for some asymptotically autonomous semilinear evolution equations, Asymptotic Analysis, 69 (2010), 31-44.

    [3]

    I. Ben Hassen and L. Chergui, Convergence of global and bounded solutions of some nonautonomous second order evolution equations with nonlinear dissipation, J. Dynam. Diff. Equa., 23 (2011), 315-332.

    [4]

    I. Ben Hassen and A. Haraux, Convergence and decay estimates for a class of second order dissipative equations involving a non-negative potential energy, J. Funct. Anal., 260 (2011), 2933-2963.

    [5]

    L. Chergui, Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity, J. Dynam. Diff. Equa., 20 (2008), 643-652.

    [6]

    L. Chergui, Convergence of global and bounded solutions of the wave equation with nonlinear dissipation and analytic nonlinearity, J. Evol. Equ., 9 (2009), 405-418.

    [7]

    R. Chill and M. A. Jendoubi, Convergence to steady states in asymptotically autonomous semilinear evolution equations, Nonlinear Anal., 53 (2000), 1017-1039.

    [8]

    M. Grasselli and M. PierreConvergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems, to appear.

    [9]

    A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities, J. Differential Equations, 144 (1998), 313-320.

    [10]

    A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9 (1999), 95-124.

    [11]

    A. Haraux and M. A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asymptot. Ana., 26 (2001), 21-36.

    [12]

    A. Haraux and M. A. Jendoubi, The Łojasiewicz gradient inequality in the infinite dimensional Hilbert space framework, J. Funct. Anal., 260 (2011), 2826-2842.

    [13]

    A. Haraux, M. A. Jendoubi and O. Kavian, Rate of decay to equilibrium in some semilinear parabolic equations, J. Evol. Equ., 3 (2003), 463-484.

    [14]

    S.-Z. Huang, "Gradient Inequalities,'' American Mathematical Society, Providence, RI, 2006.

    [15]

    S. Z. Huang and P. Takac, Convergence in gradient-like systems which are asymptotically autonomous and analytic, Nonlinear Anal. Ser. A, 46 (2001), 675-698.

    [16]

    M. A. Jendoubi, A simple unified approach to some convergence theorems of L. Simon, J. Funct. Anal., 153 (1998), 187-202.

    [17]

    M. A. Jendoubi, Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity, J. Differential Equations, 144 (1998), 302-312.

    [18]

    S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, Colloques internationaux du C.N.R.S.: Les équations aux dérivées partielles, Paris (1962), Editions du C.N.R.S., Paris, 1963, 87-89.

    [19]

    S. Łojasiewicz, "Ensembles semi-analytiques," Preprint, I.H.E.S., Bures-sur-Yvette, 1965.

    [20]

    S. Łojasiewicz, Sur les trajectoires du gradient d'une fonction analytique, Geometry seminars, 1982-1983 (Bologna, 1982-1983 Univ. Stud. Bologna, Bologna, 1984), 115-117.

    [21]

    B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications, Commun. Pure Appl. Anal., 9 (2010), 685-702.

    [22]

    J. Palis and W. de Melo, "Geometric Theory of Dynamical Systems. An Introduction,'' Springer Verlag, New York, Heidelberg, Berlin, 1982.

    [23]

    L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math., 118 (1983), 525-571.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(584) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return