\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the constants in a Kato inequality for the Euler and Navier-Stokes equations

Abstract Related Papers Cited by
  • We continue an analysis, started in [10], of some issues related to the incompressible Euler or Navier-Stokes (NS) equations on a $d$-dimensional torus $T^d$. More specifically, we consider the quadratic term in these equations; this arises from the bilinear map $(v, w) \mapsto v \cdot \partial w$, where $v, w : T^d \to R^d$ are two velocity fields. We derive upper and lower bounds for the constants in some inequalities related to the above bilinear map; these bounds hold, in particular, for the sharp constants $G_{n d} \equiv G_n$ in the Kato inequality $| < v \cdot \partial w | w >_n | \leq G_n || v ||_n || w ||^2_n$, where $n \in (d/2 + 1, + \infty)$ and $v, w$ are in the Sobolev spaces $H^n_{\Sigma_0}, H^{n+1}_{\Sigma_0}$ of zero mean, divergence free vector fields of orders $n$ and $n+1$, respectively. As examples, the numerical values of our upper and lower bounds are reported for $d=3$ and some values of $n$. When combined with the results of [10] on another inequality, the results of the present paper can be employed to set up fully quantitative error estimates for the approximate solutions of the Euler/NS equations, or to derive quantitative bounds on the time of existence of the exact solutions with specified initial data; a sketch of this program is given.
    Mathematics Subject Classification: Primary: 76D05, 26D10; Secondary: 46E35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Abdelrazec and D. Pelinovsky, Convergence of the Adomian decomposition method for initial-value problems, Numer. Methods Partial Differential Equations 27 (2011), 749-766.doi: 10.1002/num.20549.

    [2]

    R. A. Adams, "Sobolev Spaces,'' Academic Press, Boston, 1978.

    [3]

    M. V. Bartuccelli, K. B. Blyuss and Y. N. Kyrychko, Length scales and positivity of solutions of a class of reaction-diffusion equations, Comm. Pure Appl. Anal., 3 (2004), 25-40.doi: 10.3934/cpaa.2004.3.25.

    [4]

    S. I. Chernyshenko, P. Constantin, J. C. Robinson and E. S. Titi, A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations, J. Math. Phys., 48 (2007), 065204/10.doi: 10.1063/1.2372512.

    [5]

    P. Constantin and C. Foias, "Navier Stokes Equations,'' Chicago University Press, 1988.

    [6]

    T. Kato, Nonstationary flows of viscous and ideal fluids in $R^3$, J. Funct. Anal., 9 (1972), 296-305.

    [7]

    Y. N. Kyrychko and M. V. Bartuccelli, Length scales for the Navier-Stokes equations on a rotating sphere, Phys. Lett. A, 324 (2004), 179-184.doi: 10.1016/j.physleta.2004.03.008.

    [8]

    C. Morosi and L. Pizzocchero, On approximate solutions of semilinear evolution equations II. Generalizations, and applications to Navier-Stokes equations, Rev. Math. Phys., 20 (2008), 625-706.doi: 10.1142/S0129055X08003407.

    [9]

    C. Morosi and L. Pizzocchero, An $H^1$ setting for the Navier-Stokes equations: quantitative estimates, Nonlinear Analysis, 74 (2011), 2398-2414.doi: 10.1016/j.na.2010.11.043.

    [10]

    C. Morosi and L. PizzoccheroOn the constants in a basic inequality for the Euler and Navier-Stokes equations, preprint, arXiv:1007.4412v2 [math.AP].

    [11]

    C. Morosi and L. PizzoccheroOn approximate solutions of the incompressible Euler and Navier-Stokes equations, preprint, arXiv:1104.3832v1 [math.AP].

    [12]

    D. Pelinovsky and A. Sakovich, Global well-posedness of the short-pulse and sine-Gordon equations in energy space, Comm. Partial Differential Equations, 35 (2010), 613-629.doi: 10.1080/03605300903509104.

    [13]

    P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation, Found. Comput. Math., 1 (2001), 255-288.doi: 10.1007/s102080010010.

    [14]

    P. Zgliczyński, Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE - A computer-assisted proof, Found. Comput. Math., 4 (2004), 157-185.doi: 10.1007/s10208-002-0080-8.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(128) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return