[1]

H. Amann, "Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory," Birkhúser Boston, Inc., Boston, 1995.

[2]

J. Bergh, J. Löfström, "Interpolation spaces. An introduction," Grundlehren der Mathematischen Wissenschaften, SpringerVerlag, BerlinNew York, 1976.

[3]

T. G. Cowling, "Magnetohydrodynamics," Interscience Tracts on Physics and Astronomy, New York, 1957.

[4]

R. Danchin, Densitydependent incompressible fluids in bounded domains, J. Math. Fluid Mech., 8 (2006), 333381.

[5]

B. Desjardins, Regularity of weak solutions of the compressible isentropic NavierStokes equations, Comm. Partial Differential Equations, 22 (1997), 9771008.

[6]

J. I. Díaz and M. B. Lerena, On the inviscid and nonresistive limit for the equations of incompressible magnetohydrodynamics, Mathematical Models and Methods in Applied Science, 12 (2002), 14011419.

[7]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241279.

[8]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Analysis, 69 (2008), 36373660.

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.

[10]

H. Fujita and T. Kato, On the NavierStokes initial value problem. I., Arch. Rational Mech. Anal., 16 (1964), 269315.

[11]

G. P. Galdi, "An Introduction to the Mathematical Theory of the NavierStokes Equations, Vol. I. Linearized Steady Problems," SpringerVerlag, New York, 1994.

[12]

C. Guillope, Longtime behavior of the solutions of the timedependent NavierStokes equations and property of functional invariant (or attractor) sets, C. R. Acad. Sci. Paris Sér. I Math., 294 (1982), 221224.

[13]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equation, 213 (2005), 235254.

[14]

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, Journal of Functional Analysis, 227 (2005), 113152.

[15]

P. Houston, D. Schötzau and X. Wei, A mixed DG method for linearized incompressible magnetohydrodynamics, J Sci. Comput., 40 (2009), 281314.

[16]

X. Hu and D. Wang, Global solutions to the threedimensional full compressible magnetohydrodynamic flows, Commun. Math. Phys., 283 (2008), 255284.

[17]

X. Hu and D. Wang, Global existence and largetime behavior of solutions to the threedimensional equations of compressible magnetohydrodynamic flows, Arch. Rational Mech. Anal., 197 (2010), 203238.

[18]

A. G. Kulikovskiy and G. A. Lyubimov, "Magnetohydrodynamics," AddisonWesley, Reading, Massachusetts, 1965.

[19]

L. Landau and E. Lifchitz, "Electrodynamics of Continuous Media," Theoretical physics, Vol. 8, MIR, Moscow, 1990.

[20]

P. L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models," Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996.

[21]

P. L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models," Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.

[22]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heatconductive gases, J. Math. Kyoto Univ., 20 (1980), 67104.

[23]

A. Matsumura and T. Nishida, Initialboundary value problems for the equations of motion of compressible viscous and heatconductive fluids, Comm. Math. Phys., 89 (1983), 445464.

[24]

C. Miao and B. Yuan, On the wellposedness of the Cauchy problem for an MHD system in Besov spaces, Math. Methods Appl. Sci., 32 (2009), 5376.

[25]

A. Novotný and I. Stravskraba, "Introduction to the Mathematical Theory of Compressible Flow," Oxford Lecture Series in Mathematics and its Applications, 27. Oxford University Press, Oxford, 2004.

[26]

P. Schmidt, On a magnetohydrodynamic problem of Euler type, J. Differential Equation, 74 (1988), 318335.

[27]

M. E. Schonbek, T. P. Schonbek and E. Süli, Largetime behaviour of solutions to the magnetohydrodynamics equations, Math. Ann., 304 (1996), 717756.

[28]

P. Secchi, On the equations of ideal incompressible magnetohydrodynamics, Rend. Sem. Ma. Univ. Padova, 90 (1993), 103119.

[29]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635664.

[30]

C. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$ spaces for bounded and exterior domains, in "Mathematical Problems Relating to the NavierStokes Equation," 135, Ser. Adv. Math. Appl. Sci., 11, World Sci. Publ., River Edge, NJ, 1992.

[31]

C. Sulem, Quelques résultats de régularité pour les équations de la magnétohydrodynamique, C. R. Acad. Sci. Paris Sér. AB, 285 (1977), A365A368.
