 Previous Article
 CPAA Home
 This Issue

Next Article
Multibump solutions for a class of quasilinear equations on $R$
The supercooled Stefan problem in one dimension
1.  Dept. of Mathematics, UCLA, Los Angeles, CA 90095, United States 
2.  UCLA Mathematics Department, Box 951555, Los Angeles, CA 900951555, United States 
References:
show all references
References:
[1] 
Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the twophase Stefan problem. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 53795405. doi: 10.3934/dcds.2013.33.5379 
[2] 
Marianne Korten, Charles N. Moore. Regularity for solutions of the twophase Stefan problem. Communications on Pure and Applied Analysis, 2008, 7 (3) : 591600. doi: 10.3934/cpaa.2008.7.591 
[3] 
Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1phase Stefan problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 357366. doi: 10.3934/cpaa.2005.4.357 
[4] 
V. S. Manoranjan, HongMing Yin, R. Showalter. On twophase Stefan problem arising from a microwave heating process. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 11551168. doi: 10.3934/dcds.2006.15.1155 
[5] 
Chifaa Ghanmi, Saloua Mani Aouadi, Faouzi Triki. Recovering the initial condition in the onephase Stefan problem. Discrete and Continuous Dynamical Systems  S, 2022, 15 (5) : 11431164. doi: 10.3934/dcdss.2021087 
[6] 
Mauro Garavello. Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11 (1) : 89105. doi: 10.3934/nhm.2016.11.89 
[7] 
Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 51915209. doi: 10.3934/dcds.2017225 
[8] 
Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks and Heterogeneous Media, 2017, 12 (2) : 259275. doi: 10.3934/nhm.2017011 
[9] 
Feifei Tang, Suting Wei, Jun Yang. Phase transition layers for FifeGreenlee problem on smooth bounded domain. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 15271552. doi: 10.3934/dcds.2018063 
[10] 
Norbert Požár, Giang Thi Thu Vu. Longtime behavior of the onephase Stefan problem in periodic and random media. Discrete and Continuous Dynamical Systems  S, 2018, 11 (5) : 9911010. doi: 10.3934/dcdss.2018058 
[11] 
Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281287. doi: 10.3934/proc.2003.2003.281 
[12] 
Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741750. doi: 10.3934/proc.2007.2007.741 
[13] 
TienTsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 27292755. doi: 10.3934/dcds.2016.36.2729 
[14] 
Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 777798. doi: 10.3934/dcds.2007.19.777 
[15] 
Alain Miranville. Some mathematical models in phase transition. Discrete and Continuous Dynamical Systems  S, 2014, 7 (2) : 271306. doi: 10.3934/dcdss.2014.7.271 
[16] 
Karl P. Hadeler. Stefan problem, traveling fronts, and epidemic spread. Discrete and Continuous Dynamical Systems  B, 2016, 21 (2) : 417436. doi: 10.3934/dcdsb.2016.21.417 
[17] 
Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 965994. doi: 10.3934/dcds.2011.30.965 
[18] 
Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks and Heterogeneous Media, 2013, 8 (3) : 649661. doi: 10.3934/nhm.2013.8.649 
[19] 
Emanuela Caliceti, Sandro Graffi. An existence criterion for the $\mathcal{PT}$symmetric phase transition. Discrete and Continuous Dynamical Systems  B, 2014, 19 (7) : 19551967. doi: 10.3934/dcdsb.2014.19.1955 
[20] 
Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 11191135. doi: 10.3934/dcds.2006.15.1119 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]