Citation: |
[1] |
I. Athanasopoulos, L. Caffarelli and S. Salsa, Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, The Annals of Mathematics, 143 (1996), 413-434. |
[2] |
E. Di Benedetto and A. Friedman, The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc., 282 (1984), 183-204. |
[3] |
L. Chayes and G. Swindle, Hydrodynamic limits for one dimensional particle systems with moving boundaries, Ann. Probab., 24 (1996), 559-598. |
[4] |
L. Chayes and I. C. Kim, A two-sided contracting Stefan problem, submitted for publication. |
[5] |
L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Volume 19, AMS, 1998. |
[6] |
A. Fasano and M. Primicerio, General free-boundary problems for the heat equation I, J. Math. Anal. Appl., 57 (1977), 694-723. |
[7] |
A. Fasano, M. Primicerio, S. Howison and J. Ockendon, Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension, Quart. Appl. Math., 48 (1990), 153-168. |
[8] |
I. G. Götz, M. Primicerio and J. J. L. Velázquez, Asymptotic behaviour $(t\to +0)$ of the interface for the critical case of undercooled Stefan problem, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13 (2002), 143-148. |
[9] |
I. G. Götz and B. Zaltzman, Some criteria for the disappearance of the mushy region in the Stefan problem, Quart. Appl. Math., 53 (1995), 657-671. |
[10] |
M. A. Herrero and J. J. L. Velázquez, Singularity formation in the one dimensional supercooled Stefan problem, Eur. J. Appl. Math., 7 (1994), 115-150. |
[11] |
M. A. Herrero and J. J. L. Velázqez, The birth of a cusp in the two-dimensional, undercooled Stefan problem, Quart. Appl. Math., 58 (2000), 473-494. |
[12] |
H. Ishii, On a certain estimate of the free boundary in the Stefan problem, J. Differential Equations, 42 (1981), 106-115. |
[13] |
A. M. Meirmanov, "The Stefan Problem," Translated from the Russian by Marek Niezgdka and Anna Crowley. With an appendix by the author and I. G. Gtz. de Gruyter Expositions in Mathematics, 3. Walter de Gruyter & Co., Berlin, 1992. x+245 pp. ISBN: 3-11-011479-8 |