\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component

Abstract Related Papers Cited by
  • We study the Cauchy problem for the 3D Navier-Stokes equations, and prove some scalaring-invariant regularity criteria involving only one velocity component.
    Mathematics Subject Classification: Primary: 35Q30, 35B65; Secondary: 76D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $R^n$, Chinese Ann. Math. Ser. B, 16 (1995), 407-412.

    [2]

    H. Beirão da Veiga and L. C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations, 15 (2002), 345-356.

    [3]

    C. S. Cao, Sufficient conditions for the regularity to the $3$D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 26 (2010), 1141-1151.

    [4]

    C. S. Cao and E. S. TitiGlobal regularity criterion for the $3$D Navier-Stokes equations involving one entry of the velocity gradient tensor, preprint, arXiv:math/1005.4463.

    [5]

    C. S. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 57 (2008), 2643-2661.

    [6]

    P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789.

    [7]

    L. Escauriaza, G. Seregin and V. Sverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147-157.

    [8]

    J. S. Fan, S. Jiang and G. X. Ni, On regularity criteria for the $n$-dimensional Navier-Stokes equations in terms of the pressure, J. Differential Equations, 244 (2008), 2963-2979.

    [9]

    E. Hopf, Üer die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.

    [10]

    J. M. Kim, On regularity criteria of the Navier-Stokes equations in bounded domains, J. Math. Phys., 51 (2010), 053102.

    [11]

    I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203.

    [12]

    I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 453-469.

    [13]

    J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.

    [14]

    J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Topics in Mathematical Fluid Mechanics, Quaderni di Matematica, Dept. Math., Seconda University, Napoli, Caserta, Vol. 10, (2002) 163-183.

    [15]

    J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the $3$D Navier–Stokes equations, in Mathematical Fluid Mechanics (Recent Results and Open Problems), Advances in Mathematical Fluid Mechanics, edited by J. Neustupa, and P. Penel (Birkhäuser, Basel-Boston-Berlin, (2001), 239-267.

    [16]

    P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing the gradient of velocity, Appl. Math., 49 (2004), 483-493.

    [17]

    G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182.

    [18]

    J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-191.

    [19]

    J. Serrin, The initial value problems for the Navier-Stokes equations, in "Nonlinear Problems" (ed. R. E. Langer), University of Wisconsin Press, Madison, WI, (1963).

    [20]

    R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

    [21]

    X. C. Zhang, A regularity criterion for the solutions of $3$D Navier-Stokes equations, J. Math. Anal. Appl., 346 (2008), 336-339.

    [22]

    Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\R^3$, J. Differential Equations, 216 (2005), 470-481.

    [23]

    Z. J. Zhang, Z. A. Yao, P. Li, C. C. Guo and M. LuTwo new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor, Acta Appl. Math.. doi: doi: 10.1007/s10440-012-9712-4.

    [24]

    Y, Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity, Monatsh. Math., 144 (2005), 251-257.

    [25]

    Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496-1514.

    [26]

    Y. Zhou, On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $R^n$, Z. Angew. Math. Phys., 57 (2006), 384-392.

    [27]

    Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514.

    [28]

    Y. Zhou and M. Pokorný, On the regularity to the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107.

    [29]

    Y. Zhou, Regularity criteria in terms of pressure for the $3$D Navier-Stokes equations in a generic domain, Math. Ann., 328 (2004), 173-192.

    [30]

    Y. Zhou, Weighted regularity criteria for the three-dimensional Navier-Stokes equations, Proc. Roy. Soc. Edinburgh, Sect. A: Math., 139 (2009), 661-671.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return