-
Previous Article
A refined result on sign changing solutions for a critical elliptic problem
- CPAA Home
- This Issue
-
Next Article
Ground state solutions for quasilinear stationary Schrödinger equations with critical growth
A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component
1. | School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000 Jiangxi, China |
References:
[1] |
H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $R^n$, Chinese Ann. Math. Ser. B, 16 (1995), 407-412. |
[2] |
H. Beirão da Veiga and L. C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations, 15 (2002), 345-356. |
[3] |
C. S. Cao, Sufficient conditions for the regularity to the $3$D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 26 (2010), 1141-1151. |
[4] |
C. S. Cao and E. S. Titi, Global regularity criterion for the $3$D Navier-Stokes equations involving one entry of the velocity gradient tensor,, preprint, ().
|
[5] |
C. S. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 57 (2008), 2643-2661. |
[6] |
P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789. |
[7] |
L. Escauriaza, G. Seregin and V. Sverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147-157. |
[8] |
J. S. Fan, S. Jiang and G. X. Ni, On regularity criteria for the $n$-dimensional Navier-Stokes equations in terms of the pressure, J. Differential Equations, 244 (2008), 2963-2979. |
[9] |
E. Hopf, Üer die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231. |
[10] |
J. M. Kim, On regularity criteria of the Navier-Stokes equations in bounded domains, J. Math. Phys., 51 (2010), 053102. |
[11] |
I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203. |
[12] |
I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 453-469. |
[13] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. |
[14] |
J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Topics in Mathematical Fluid Mechanics, Quaderni di Matematica, Dept. Math., Seconda University, Napoli, Caserta, Vol. 10, (2002) 163-183. |
[15] |
J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the $3$D Navier–Stokes equations, in Mathematical Fluid Mechanics (Recent Results and Open Problems), Advances in Mathematical Fluid Mechanics, edited by J. Neustupa, and P. Penel (Birkhäuser, Basel-Boston-Berlin, (2001), 239-267. |
[16] |
P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing the gradient of velocity, Appl. Math., 49 (2004), 483-493. |
[17] |
G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182. |
[18] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-191. |
[19] |
J. Serrin, The initial value problems for the Navier-Stokes equations, in "Nonlinear Problems" (ed. R. E. Langer), University of Wisconsin Press, Madison, WI, (1963). |
[20] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[21] |
X. C. Zhang, A regularity criterion for the solutions of $3$D Navier-Stokes equations, J. Math. Anal. Appl., 346 (2008), 336-339. |
[22] |
Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\R^3$, J. Differential Equations, 216 (2005), 470-481. |
[23] |
Z. J. Zhang, Z. A. Yao, P. Li, C. C. Guo and M. Lu, Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor,, Acta Appl. Math.., ().
doi: doi: 10.1007/s10440-012-9712-4. |
[24] |
Y, Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity, Monatsh. Math., 144 (2005), 251-257. |
[25] |
Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496-1514. |
[26] |
Y. Zhou, On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $R^n$, Z. Angew. Math. Phys., 57 (2006), 384-392. |
[27] |
Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514. |
[28] |
Y. Zhou and M. Pokorný, On the regularity to the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107. |
[29] |
Y. Zhou, Regularity criteria in terms of pressure for the $3$D Navier-Stokes equations in a generic domain, Math. Ann., 328 (2004), 173-192. |
[30] |
Y. Zhou, Weighted regularity criteria for the three-dimensional Navier-Stokes equations, Proc. Roy. Soc. Edinburgh, Sect. A: Math., 139 (2009), 661-671. |
show all references
References:
[1] |
H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $R^n$, Chinese Ann. Math. Ser. B, 16 (1995), 407-412. |
[2] |
H. Beirão da Veiga and L. C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations, 15 (2002), 345-356. |
[3] |
C. S. Cao, Sufficient conditions for the regularity to the $3$D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 26 (2010), 1141-1151. |
[4] |
C. S. Cao and E. S. Titi, Global regularity criterion for the $3$D Navier-Stokes equations involving one entry of the velocity gradient tensor,, preprint, ().
|
[5] |
C. S. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 57 (2008), 2643-2661. |
[6] |
P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789. |
[7] |
L. Escauriaza, G. Seregin and V. Sverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147-157. |
[8] |
J. S. Fan, S. Jiang and G. X. Ni, On regularity criteria for the $n$-dimensional Navier-Stokes equations in terms of the pressure, J. Differential Equations, 244 (2008), 2963-2979. |
[9] |
E. Hopf, Üer die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231. |
[10] |
J. M. Kim, On regularity criteria of the Navier-Stokes equations in bounded domains, J. Math. Phys., 51 (2010), 053102. |
[11] |
I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203. |
[12] |
I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 453-469. |
[13] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. |
[14] |
J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, Topics in Mathematical Fluid Mechanics, Quaderni di Matematica, Dept. Math., Seconda University, Napoli, Caserta, Vol. 10, (2002) 163-183. |
[15] |
J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the $3$D Navier–Stokes equations, in Mathematical Fluid Mechanics (Recent Results and Open Problems), Advances in Mathematical Fluid Mechanics, edited by J. Neustupa, and P. Penel (Birkhäuser, Basel-Boston-Berlin, (2001), 239-267. |
[16] |
P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing the gradient of velocity, Appl. Math., 49 (2004), 483-493. |
[17] |
G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182. |
[18] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-191. |
[19] |
J. Serrin, The initial value problems for the Navier-Stokes equations, in "Nonlinear Problems" (ed. R. E. Langer), University of Wisconsin Press, Madison, WI, (1963). |
[20] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[21] |
X. C. Zhang, A regularity criterion for the solutions of $3$D Navier-Stokes equations, J. Math. Anal. Appl., 346 (2008), 336-339. |
[22] |
Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\R^3$, J. Differential Equations, 216 (2005), 470-481. |
[23] |
Z. J. Zhang, Z. A. Yao, P. Li, C. C. Guo and M. Lu, Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor,, Acta Appl. Math.., ().
doi: doi: 10.1007/s10440-012-9712-4. |
[24] |
Y, Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity, Monatsh. Math., 144 (2005), 251-257. |
[25] |
Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496-1514. |
[26] |
Y. Zhou, On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $R^n$, Z. Angew. Math. Phys., 57 (2006), 384-392. |
[27] |
Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514. |
[28] |
Y. Zhou and M. Pokorný, On the regularity to the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107. |
[29] |
Y. Zhou, Regularity criteria in terms of pressure for the $3$D Navier-Stokes equations in a generic domain, Math. Ann., 328 (2004), 173-192. |
[30] |
Y. Zhou, Weighted regularity criteria for the three-dimensional Navier-Stokes equations, Proc. Roy. Soc. Edinburgh, Sect. A: Math., 139 (2009), 661-671. |
[1] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[2] |
Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 |
[3] |
Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 |
[4] |
Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic and Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545 |
[5] |
Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141 |
[6] |
Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228 |
[7] |
Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064 |
[8] |
Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299 |
[9] |
Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067 |
[10] |
Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081 |
[11] |
Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033 |
[12] |
Alessio Falocchi, Filippo Gazzola. Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1185-1200. doi: 10.3934/dcds.2021151 |
[13] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[14] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[15] |
Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185 |
[16] |
Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603 |
[17] |
Wendong Wang, Liqun Zhang, Zhifei Zhang. On the interior regularity criteria of the 3-D navier-stokes equations involving two velocity components. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2609-2627. doi: 10.3934/dcds.2018110 |
[18] |
Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure and Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353 |
[19] |
Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure and Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585 |
[20] |
Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]