Advanced Search
Article Contents
Article Contents

Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data

Abstract Related Papers Cited by
  • We prove existence and regularity results for distributional solutions of nonlinear elliptic and parabolic equations with general anisotropic diffusivities with variable exponents. The data are assumed to be merely integrable.
    Mathematics Subject Classification: 35J60, 35K55, 35D10.


    \begin{equation} \\ \end{equation}
  • [1]

    E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Rational Mech. Anal., 156 (2001), 121-140.


    M. Bendahmane, M. Langlais and M. Saad, On some anisotropic reaction-diffusion systems with $L^1$-data modeling the propagation of an epidemic disease, Nonlinear Anal., 54 (2003), 617-636.


    M. Bendahmane and M. SaadEntropy solutions for a nonlinear parabolic equation with variable exponents and L1 data, Preprint.


    M. Bendahmane and P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and $L^1$-data, Nonlinear Analysis TMA, 70 (2009), 567-583.doi: http://dx.doi.org/10.1016/j.na.2007.12.027.


    M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 data, Journal of Differential Equations, 249 (2010), 1483-1515.doi: DOI: 10.1016/j.jde.2010.05.011.


    L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169.


    L. Boccardo, T. Gallouët and P. Marcellini, Anisotropic equations in $L^1$, Differential Integral Equations, 9 (1996), 209-212.


    Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.


    L. Diening, P. Hästö, T. Harjulehto and M. R.užička, "Lebesque and Sobolev Spaces with Variable Exponents," Lecture Notes in Mathematics, Vol. 2017, Springer-Verlag, Berlin, 2011.


    X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.


    X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(U)$ and $W^{m, p(x)}(U)$, J. Math. Anal. Appl., 263 (2001), 424-446.


    T. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal., 25 (2006), 205-222.


    O. Kovácik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czech. Math. J., 41 (1991), 592-618.


    F. Li and H. Zhao, Anisotropic parabolic equations with measure data, J. Partial Differential Equations, 14 (2001), 21-30.


    P. Marcelli, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267-284.


    M. R.užička, "Electrorheological Fluids: Modeling and Mathematical Theory," Lecture Notes in Mathematics, Springer, Berlin, 2000.


    M. Sanchon and M. Urbano, Entropy solutions for the $p(x)$-Laplace equation, Trans. American Math. Soc., 361 (2009), 6387-6405.


    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mathematica Pura Applicata, (1987), 65-96.


    M. Troisi, Teoremi di inclusione per spazi di sobolev non isotropi, Ricerche. Mat., 18 (1969), 3-24.


    V. V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), 67-81.

  • 加载中

Article Metrics

HTML views() PDF downloads(141) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint