May  2013, 12(3): 1201-1220. doi: 10.3934/cpaa.2013.12.1201

Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data

1. 

Université Victor Ségalen - Bordeaux 2, 146 rue Léo Saignat, BP 26, 33076 Bordeaux

2. 

Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, NO-0316 Oslo, Norway

3. 

Ecole Centrale de nantes, Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, 1, rue de la Noé, 44321 Nantes

Received  September 2011 Revised  August 2012 Published  September 2012

We prove existence and regularity results for distributional solutions of nonlinear elliptic and parabolic equations with general anisotropic diffusivities with variable exponents. The data are assumed to be merely integrable.
Citation: Mostafa Bendahmane, Kenneth Hvistendahl Karlsen, Mazen Saad. Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1201-1220. doi: 10.3934/cpaa.2013.12.1201
References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Rational Mech. Anal., 156 (2001), 121-140.

[2]

M. Bendahmane, M. Langlais and M. Saad, On some anisotropic reaction-diffusion systems with $L^1$-data modeling the propagation of an epidemic disease, Nonlinear Anal., 54 (2003), 617-636.

[3]

M. Bendahmane and M. Saad, Entropy solutions for a nonlinear parabolic equation with variable exponents and L1 data,, Preprint., (). 

[4]

M. Bendahmane and P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and $L^1$-data, Nonlinear Analysis TMA, 70 (2009), 567-583. doi: http://dx.doi.org/10.1016/j.na.2007.12.027.

[5]

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 data, Journal of Differential Equations, 249 (2010), 1483-1515. doi: DOI: 10.1016/j.jde.2010.05.011.

[6]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169.

[7]

L. Boccardo, T. Gallouët and P. Marcellini, Anisotropic equations in $L^1$, Differential Integral Equations, 9 (1996), 209-212.

[8]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.

[9]

L. Diening, P. Hästö, T. Harjulehto and M. R.užička, "Lebesque and Sobolev Spaces with Variable Exponents," Lecture Notes in Mathematics, Vol. 2017, Springer-Verlag, Berlin, 2011.

[10]

X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.

[11]

X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(U)$ and $W^{m, p(x)}(U)$, J. Math. Anal. Appl., 263 (2001), 424-446.

[12]

T. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal., 25 (2006), 205-222.

[13]

O. Kovácik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czech. Math. J., 41 (1991), 592-618.

[14]

F. Li and H. Zhao, Anisotropic parabolic equations with measure data, J. Partial Differential Equations, 14 (2001), 21-30.

[15]

P. Marcelli, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267-284.

[16]

M. R.užička, "Electrorheological Fluids: Modeling and Mathematical Theory," Lecture Notes in Mathematics, Springer, Berlin, 2000.

[17]

M. Sanchon and M. Urbano, Entropy solutions for the $p(x)$-Laplace equation, Trans. American Math. Soc., 361 (2009), 6387-6405.

[18]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mathematica Pura Applicata, (1987), 65-96.

[19]

M. Troisi, Teoremi di inclusione per spazi di sobolev non isotropi, Ricerche. Mat., 18 (1969), 3-24.

[20]

V. V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), 67-81.

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Rational Mech. Anal., 156 (2001), 121-140.

[2]

M. Bendahmane, M. Langlais and M. Saad, On some anisotropic reaction-diffusion systems with $L^1$-data modeling the propagation of an epidemic disease, Nonlinear Anal., 54 (2003), 617-636.

[3]

M. Bendahmane and M. Saad, Entropy solutions for a nonlinear parabolic equation with variable exponents and L1 data,, Preprint., (). 

[4]

M. Bendahmane and P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and $L^1$-data, Nonlinear Analysis TMA, 70 (2009), 567-583. doi: http://dx.doi.org/10.1016/j.na.2007.12.027.

[5]

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 data, Journal of Differential Equations, 249 (2010), 1483-1515. doi: DOI: 10.1016/j.jde.2010.05.011.

[6]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169.

[7]

L. Boccardo, T. Gallouët and P. Marcellini, Anisotropic equations in $L^1$, Differential Integral Equations, 9 (1996), 209-212.

[8]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.

[9]

L. Diening, P. Hästö, T. Harjulehto and M. R.užička, "Lebesque and Sobolev Spaces with Variable Exponents," Lecture Notes in Mathematics, Vol. 2017, Springer-Verlag, Berlin, 2011.

[10]

X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.

[11]

X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(U)$ and $W^{m, p(x)}(U)$, J. Math. Anal. Appl., 263 (2001), 424-446.

[12]

T. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal., 25 (2006), 205-222.

[13]

O. Kovácik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czech. Math. J., 41 (1991), 592-618.

[14]

F. Li and H. Zhao, Anisotropic parabolic equations with measure data, J. Partial Differential Equations, 14 (2001), 21-30.

[15]

P. Marcelli, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267-284.

[16]

M. R.užička, "Electrorheological Fluids: Modeling and Mathematical Theory," Lecture Notes in Mathematics, Springer, Berlin, 2000.

[17]

M. Sanchon and M. Urbano, Entropy solutions for the $p(x)$-Laplace equation, Trans. American Math. Soc., 361 (2009), 6387-6405.

[18]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mathematica Pura Applicata, (1987), 65-96.

[19]

M. Troisi, Teoremi di inclusione per spazi di sobolev non isotropi, Ricerche. Mat., 18 (1969), 3-24.

[20]

V. V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), 67-81.

[1]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure and Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[2]

Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3689-3711. doi: 10.3934/dcdsb.2018311

[3]

C. García Vázquez, Francisco Ortegón Gallego. On certain nonlinear parabolic equations with singular diffusion and data in $L^1$. Communications on Pure and Applied Analysis, 2005, 4 (3) : 589-612. doi: 10.3934/cpaa.2005.4.589

[4]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[5]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[6]

Ahmed Aberqi, Jaouad Bennouna, Omar Benslimane, Maria Alessandra Ragusa. Weak solvability of nonlinear elliptic equations involving variable exponents. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022105

[7]

Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072

[8]

Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663

[9]

Inbo Sim, Yun-Ho Kim. Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents. Conference Publications, 2013, 2013 (special) : 695-707. doi: 10.3934/proc.2013.2013.695

[10]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[11]

M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885

[12]

Niklas Sapountzoglou, Aleksandra Zimmermann. Well-posedness of renormalized solutions for a stochastic $ p $-Laplace equation with $ L^1 $-initial data. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2341-2376. doi: 10.3934/dcds.2020367

[13]

Rosaria Di Nardo. Nonlinear parabolic equations with a lower order term and $L^1$ data. Communications on Pure and Applied Analysis, 2010, 9 (4) : 929-942. doi: 10.3934/cpaa.2010.9.929

[14]

Ramzi Alsaedi. Perturbation effects for the minimal surface equation with multiple variable exponents. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 139-150. doi: 10.3934/dcdss.2019010

[15]

Md. Rabiul Haque, Takayoshi Ogawa, Ryuichi Sato. Existence of weak solutions to a convection–diffusion equation in a uniformly local lebesgue space. Communications on Pure and Applied Analysis, 2020, 19 (2) : 677-697. doi: 10.3934/cpaa.2020031

[16]

Chérif Amrouche, Huy Hoang Nguyen. Elliptic problems with $L^1$-data in the half-space. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 369-397. doi: 10.3934/dcdss.2012.5.369

[17]

Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349-358. doi: 10.3934/proc.2009.2009.349

[18]

Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1

[19]

Maria-Magdalena Boureanu, Cristian Udrea. No--flux boundary value problems with anisotropic variable exponents. Communications on Pure and Applied Analysis, 2015, 14 (3) : 881-896. doi: 10.3934/cpaa.2015.14.881

[20]

Xueke Pu, Boling Guo, Jingjun Zhang. Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 199-207. doi: 10.3934/dcdsb.2010.14.199

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (6)

[Back to Top]