-
Previous Article
On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent
- CPAA Home
- This Issue
-
Next Article
Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data
Phragmén-Lindelöf alternative for an exact heat conduction equation with delay
1. | Departament de Matemàtica Aplicada 2, ETSEIAT–UPC, C. Colom 11, 08222 Terrassa, Barcelona, Spain |
2. | Matemática Aplicada 2, E.T.S.E.I.T.-U.P.C., Colom 11, 08222 Terrassa, Barcelona, Spain |
References:
[1] |
D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl. Mech. Rev., 51 (1998), 705-729.
doi: 10.1115/1.3098984. |
[2] |
M. Dreher, R. Quintanilla and R. Racke, Ill posed problems in thermomechanics, Applied Mathematics Letters, 22 (2009), 1374-1379.
doi: 10.1016/j.aml.2009.03.010. |
[3] |
J. N. Flavin, R. J. Knops and L. E. Payne, Decay estimates for the constrained elastic cylinder of variable cross-section, Quarterly Applied Mathematics, 47 (1989), 325-350. |
[4] |
J. N. Flavin, R. J. Knops and L. E. Payne, Energy bounds in dynamical problems for a semi-infinite elastic beam, in "Elasticity: Mathematical Methods and Applications'' (G. Eason and R.W. Ogden eds.), Chichester: Ellis Horwood, (1989), pp. 101-111. |
[5] |
R. B. Hetnarski and J. Ignaczak, Generalized thermoelasticity, J. Thermal Stresses, 22 (1999), 451-470.
doi: 10.1080/014957399280832. |
[6] |
R. B. Hetnarski and J. Ignaczak, Nonclassical dynamical thermoelasticity, International Journal of Solids and Structures, 37 (2000), 215-224.
doi: 10.1016/S0020-7683(99)00089-X. |
[7] |
C. O. Horgan, L. E. Payne and L. T. Wheeler, Spatial decay estimates in transient heat conduction, Quarterly Applied Mathematics, 42 (1984), 119-127. |
[8] |
C. O. Horgan and R. Quintanilla, Spatial decay of transient end effects in functionally graded heat conducting materials, Quarterly Applied Mathematics, 59 (2001), 529-542. |
[9] |
C. O. Horgan and R. Quintanilla, Spatial behaviour of solutions of the dual-phase-lag heat equation, Math. Methods Appl. Sci., 28 (2005), 43-57.
doi: 10.1002/mma.548. |
[10] |
J. Ignaczak and M. Ostoja-Starzewski, "Thermoelasticity with Finite Wave Speeds,'' Oxford Mathematical Monographs, Oxford, 2010. |
[11] |
R. Kumar and S. Mukhopadhyay, Analysis of the effects of phase-lags on propagation of harmonic plane waves in thermoelastic media, Comp. Methods in Sci. Tech., 16 (2010), 19-28. |
[12] |
M. C. Leseduarte and R. Quintanilla, Some qualitative properties of solutions of the system governing acoustic waves in bubbly liquids, International Journal of Engineering Science, 44 (2006), 1146-1155.
doi: 10.1016/j.ijengsci.2006.06.009. |
[13] |
M. C. Leseduarte and R. Quintanilla, Spatial behavior for solutions in heat conduction with two delays, Manuscript, (2011). |
[14] |
S. Mukhopadhyay and R. Kumar, Analysis of phase-lag effects on wave propagation in a thick plate under axisymmetric temperature distribution, Acta Mechanica, 210 (2010), 331-344.
doi: 10.1007/s00707-009-0209-9. |
[15] |
S. Mukhopadhyay, S. Kothari and R. Kumar, On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags, Acta Mechanica, 214 (2010), 305-314.
doi: 10.1007/s00707-010-0291-z. |
[16] |
R. Quintanilla, Damping of end effects in a thermoelastic theory, Appl. Math. Letters, 14 (2001), 137-141.
doi: 10.1016/S0893-9659(00)00125-7. |
[17] |
R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory, J. Non-Equilibrium Thermodynamics, 27 (2002), 217-227.
doi: 10.1515/JNETDY.2002.012. |
[18] |
R. Quintanilla, A condition on the delay parameters in the one-dimensional dual-phase-lag thermoelastic theory, J. Thermal Stresses, 26 (2003), 713-721.
doi: 10.1080/713855996. |
[19] |
R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, Journal of Thermal Stresses, 31 (2008), 260-269.
doi: 10.1080/01495730701738272. |
[20] |
R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, Journal of Thermal Stresses, 32 (2009), 1270-1278.
doi: 10.1080/01495730903310599. |
[21] |
R. Quintanilla, Spatial estimates for an equation with a delay term, Journal Applied Mathematics Physics (ZAMP), 61 (2010), 381-388.
doi: 10.1007/s00033-009-0049-4. |
[22] |
R. Quintanilla, Some solutions for a family of exact phase-lag heat conduction problems, Mechanics Research Communications, 38 (2011), 355-360.
doi: 10.1016/j.mechrescom.2011.04.008. |
[23] |
R. Quintanilla and R. Racke, A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer, 49 (2006), 1209-1213.
doi: 10.1016/j.ijheatmasstransfer.2005.10.016. |
[24] |
R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM Journal of Applied Mathematics, 66 (2006), 977-1001.
doi: 10.1137/05062860X. |
[25] |
R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proc. Royal Society London A, 463 (2007), 659-674.
doi: 10.1098/rspa.2006.1784. |
[26] |
R. Quintanilla and R. Racke, A note on stability in three-phase-lag heat conduction, Int. J. Heat Mass Transfer, 51 (2008), 24-29.
doi: 10.1016/j.ijheatmasstransfer.2007.04.045. |
[27] |
S. K. Roy Choudhuri, On a thermoelastic three-phase-lag model, J. Thermal Stresses, 30 (2007), 231-238.
doi: 10.1080/01495730601130919. |
[28] |
B. Straughan, "Heat Waves,'' Springer-Verlag, Berlin Heidelberg, 2011.
doi: 10.1007/978-1-4614-0493-4. |
[29] |
D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer, 117 (1995), 8-16.
doi: 10.1115/1.2822329. |
[30] |
L. Wang, X. Zhou and X. Wei, "Heat Conduction, Mathematical Models and Analytical Solutions,'' Springer-Verlag, Berlin Heidelberg, 2008. |
[31] |
F. Xu, S. Moon, X. Zhang, L. Shao, Y. S. Song and U. Demirci, Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation, Phyl. Transactions Royal Society A-Math. Phys. and Engin. Scies., 368 (2010), 561-583.
doi: 10.1098/rsta.2009.0248. |
[32] |
F. Xu, T. J. Lu and X. E. Guo, Multi-scale biothermal and biomechanical behaviours of biological materials, Phyl. Transactions Royal Society A-Math. Phys. and Engin. Scies., 368 (2010), 517-519.
doi: 10.1098/rsta.2009.0249. |
show all references
References:
[1] |
D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl. Mech. Rev., 51 (1998), 705-729.
doi: 10.1115/1.3098984. |
[2] |
M. Dreher, R. Quintanilla and R. Racke, Ill posed problems in thermomechanics, Applied Mathematics Letters, 22 (2009), 1374-1379.
doi: 10.1016/j.aml.2009.03.010. |
[3] |
J. N. Flavin, R. J. Knops and L. E. Payne, Decay estimates for the constrained elastic cylinder of variable cross-section, Quarterly Applied Mathematics, 47 (1989), 325-350. |
[4] |
J. N. Flavin, R. J. Knops and L. E. Payne, Energy bounds in dynamical problems for a semi-infinite elastic beam, in "Elasticity: Mathematical Methods and Applications'' (G. Eason and R.W. Ogden eds.), Chichester: Ellis Horwood, (1989), pp. 101-111. |
[5] |
R. B. Hetnarski and J. Ignaczak, Generalized thermoelasticity, J. Thermal Stresses, 22 (1999), 451-470.
doi: 10.1080/014957399280832. |
[6] |
R. B. Hetnarski and J. Ignaczak, Nonclassical dynamical thermoelasticity, International Journal of Solids and Structures, 37 (2000), 215-224.
doi: 10.1016/S0020-7683(99)00089-X. |
[7] |
C. O. Horgan, L. E. Payne and L. T. Wheeler, Spatial decay estimates in transient heat conduction, Quarterly Applied Mathematics, 42 (1984), 119-127. |
[8] |
C. O. Horgan and R. Quintanilla, Spatial decay of transient end effects in functionally graded heat conducting materials, Quarterly Applied Mathematics, 59 (2001), 529-542. |
[9] |
C. O. Horgan and R. Quintanilla, Spatial behaviour of solutions of the dual-phase-lag heat equation, Math. Methods Appl. Sci., 28 (2005), 43-57.
doi: 10.1002/mma.548. |
[10] |
J. Ignaczak and M. Ostoja-Starzewski, "Thermoelasticity with Finite Wave Speeds,'' Oxford Mathematical Monographs, Oxford, 2010. |
[11] |
R. Kumar and S. Mukhopadhyay, Analysis of the effects of phase-lags on propagation of harmonic plane waves in thermoelastic media, Comp. Methods in Sci. Tech., 16 (2010), 19-28. |
[12] |
M. C. Leseduarte and R. Quintanilla, Some qualitative properties of solutions of the system governing acoustic waves in bubbly liquids, International Journal of Engineering Science, 44 (2006), 1146-1155.
doi: 10.1016/j.ijengsci.2006.06.009. |
[13] |
M. C. Leseduarte and R. Quintanilla, Spatial behavior for solutions in heat conduction with two delays, Manuscript, (2011). |
[14] |
S. Mukhopadhyay and R. Kumar, Analysis of phase-lag effects on wave propagation in a thick plate under axisymmetric temperature distribution, Acta Mechanica, 210 (2010), 331-344.
doi: 10.1007/s00707-009-0209-9. |
[15] |
S. Mukhopadhyay, S. Kothari and R. Kumar, On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags, Acta Mechanica, 214 (2010), 305-314.
doi: 10.1007/s00707-010-0291-z. |
[16] |
R. Quintanilla, Damping of end effects in a thermoelastic theory, Appl. Math. Letters, 14 (2001), 137-141.
doi: 10.1016/S0893-9659(00)00125-7. |
[17] |
R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory, J. Non-Equilibrium Thermodynamics, 27 (2002), 217-227.
doi: 10.1515/JNETDY.2002.012. |
[18] |
R. Quintanilla, A condition on the delay parameters in the one-dimensional dual-phase-lag thermoelastic theory, J. Thermal Stresses, 26 (2003), 713-721.
doi: 10.1080/713855996. |
[19] |
R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, Journal of Thermal Stresses, 31 (2008), 260-269.
doi: 10.1080/01495730701738272. |
[20] |
R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, Journal of Thermal Stresses, 32 (2009), 1270-1278.
doi: 10.1080/01495730903310599. |
[21] |
R. Quintanilla, Spatial estimates for an equation with a delay term, Journal Applied Mathematics Physics (ZAMP), 61 (2010), 381-388.
doi: 10.1007/s00033-009-0049-4. |
[22] |
R. Quintanilla, Some solutions for a family of exact phase-lag heat conduction problems, Mechanics Research Communications, 38 (2011), 355-360.
doi: 10.1016/j.mechrescom.2011.04.008. |
[23] |
R. Quintanilla and R. Racke, A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer, 49 (2006), 1209-1213.
doi: 10.1016/j.ijheatmasstransfer.2005.10.016. |
[24] |
R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM Journal of Applied Mathematics, 66 (2006), 977-1001.
doi: 10.1137/05062860X. |
[25] |
R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proc. Royal Society London A, 463 (2007), 659-674.
doi: 10.1098/rspa.2006.1784. |
[26] |
R. Quintanilla and R. Racke, A note on stability in three-phase-lag heat conduction, Int. J. Heat Mass Transfer, 51 (2008), 24-29.
doi: 10.1016/j.ijheatmasstransfer.2007.04.045. |
[27] |
S. K. Roy Choudhuri, On a thermoelastic three-phase-lag model, J. Thermal Stresses, 30 (2007), 231-238.
doi: 10.1080/01495730601130919. |
[28] |
B. Straughan, "Heat Waves,'' Springer-Verlag, Berlin Heidelberg, 2011.
doi: 10.1007/978-1-4614-0493-4. |
[29] |
D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer, 117 (1995), 8-16.
doi: 10.1115/1.2822329. |
[30] |
L. Wang, X. Zhou and X. Wei, "Heat Conduction, Mathematical Models and Analytical Solutions,'' Springer-Verlag, Berlin Heidelberg, 2008. |
[31] |
F. Xu, S. Moon, X. Zhang, L. Shao, Y. S. Song and U. Demirci, Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation, Phyl. Transactions Royal Society A-Math. Phys. and Engin. Scies., 368 (2010), 561-583.
doi: 10.1098/rsta.2009.0248. |
[32] |
F. Xu, T. J. Lu and X. E. Guo, Multi-scale biothermal and biomechanical behaviours of biological materials, Phyl. Transactions Royal Society A-Math. Phys. and Engin. Scies., 368 (2010), 517-519.
doi: 10.1098/rsta.2009.0249. |
[1] |
Fabio Punzo. Phragmèn-Lindelöf principles for fully nonlinear elliptic equations with unbounded coefficients. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1439-1461. doi: 10.3934/cpaa.2010.9.1439 |
[2] |
Seppo Granlund, Niko Marola. Phragmén--Lindelöf theorem for infinity harmonic functions. Communications on Pure and Applied Analysis, 2015, 14 (1) : 127-132. doi: 10.3934/cpaa.2015.14.127 |
[3] |
Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic and Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165 |
[4] |
Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014 |
[5] |
Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations and Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399 |
[6] |
Xin Zhong. Singularity formation to the two-dimensional non-barotropic non-resistive magnetohydrodynamic equations with zero heat conduction in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1083-1096. doi: 10.3934/dcdsb.2019209 |
[7] |
Kazuhiro Ishige, Tatsuki Kawakami. Asymptotic behavior of solutions for some semilinear heat equations in $R^N$. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1351-1371. doi: 10.3934/cpaa.2009.8.1351 |
[8] |
Cristina Brändle, Arturo De Pablo. Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1161-1178. doi: 10.3934/cpaa.2018056 |
[9] |
Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure and Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793 |
[10] |
Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569 |
[11] |
Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078 |
[12] |
Claudio Giorgi, Diego Grandi, Vittorino Pata. On the Green-Naghdi Type III heat conduction model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2133-2143. doi: 10.3934/dcdsb.2014.19.2133 |
[13] |
Xiaoliang Li, Cong Wang. An optimization problem in heat conduction with volume constraint and double obstacles. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022084 |
[14] |
Juan Campos, Rafael Obaya, Massimo Tarallo. Recurrent equations with sign and Fredholm alternative. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 959-977. doi: 10.3934/dcdss.2016036 |
[15] |
Xianyi Li, Deming Zhu. Comparison theorems of oscillation and nonoscillation for neutral difference equations with continuous arguments. Communications on Pure and Applied Analysis, 2003, 2 (4) : 579-589. doi: 10.3934/cpaa.2003.2.579 |
[16] |
Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016 |
[17] |
Delio Mugnolo. Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2 (1) : 55-79. doi: 10.3934/nhm.2007.2.55 |
[18] |
Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707-716. doi: 10.3934/proc.2011.2011.707 |
[19] |
Akram Ben Aissa. Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 983-993. doi: 10.3934/dcdss.2021106 |
[20] |
Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]