\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A refined result on sign changing solutions for a critical elliptic problem

Abstract Related Papers Cited by
  • In this work, we consider sign changing solutions to the critical elliptic problem $\Delta u + |u|^{\frac{4}{N-2}}u = 0$ in $\Omega_\varepsilon$ and $u=0$ on $\partial\Omega_\varepsilon$, where $\Omega_\varepsilon:=\Omega-\left(\bigcup_{i=1}^m (a_i+\varepsilon\Omega_i)\right)$ for small parameter $\varepsilon>0$ is a perforated domain, $\Omega$ and $\Omega_i$ with $0\in \Omega_i$ ($\forall i=1,\cdots,m$) are bounded regular general domains without symmetry in $\mathbb{R}^N$ and $a_i$ are points in $\Omega$ for all $i=1,\cdots,m$. As $\varepsilon$ goes to zero, we construct by gluing method solutions with multiple blow up at each point $a_i$ for all $i=1,\cdots,m$.
    Mathematics Subject Classification: Primary: 35J60, 35J25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.doi: 10.1002/cpa.3160410302.

    [2]

    A. Bahri, Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differ. Equ., 3 (1995), 67-93.doi: 10.1007/BF01190892.

    [3]

    T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Top. Meth. Nonlin. Anal., 22 (2003), 1-14.

    [4]

    T. Bartsch, A. M. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Partial Differential Equationsm, 26 (2006), 265-282.doi: 10.1007/s00526-006-0004-6.

    [5]

    H. Brezis and L. Nirenberg, Positive solutions of non linear elliptic equations involving critical Sobolev expronents, Comm. Pure Appl. Math., 36 (1983), 437-477.doi: 10.1002/cpa.3160360405.

    [6]

    A. Byde, Gluing theorems for constant scalar curvature manifolds, Indiana Univ. Math. J., 52 (2003), 1147-1199.doi: 10.1512/iumj.2003.52.2109.

    [7]

    M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric domain, Calc. Var. Partial Differential Equations, 21 (2004), 1-14.doi: 10.1007/s00526-003-0241-x.

    [8]

    E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGill-Hill, New York, 1955.

    [9]

    J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sr. I Math., 299 (1984), 209-212.

    [10]

    M. del Pino, J. Dolbeault and M. Musso, "Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Differ. Equation, 193 (2003), 280-306.doi: 10.1016/S0022-0396(03)00151-7.

    [11]

    M. del Pino, J. Dolbeault and M. Musso, The Brezis-Nirenberg problem near criticality in dimension 3, J. Math. Pures Appl., 83 (2004), 1405-1456.doi: 10.1016/j.matpur.2004.02.007.

    [12]

    M. del Pino, M. Musso and A. Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 45-82.doi: 10.1016/j.anihpc.2004.05.001.

    [13]

    M. del Pino, P. Felmer and M. Musso, Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differ. Equation, 182 (2002), 511-540.doi: 10.1006/jdeq.2001.4098.

    [14]

    M. del Pino, P. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Soc., 35 (2003), 513-521.doi: 10.1112/S0024609303001942.

    [15]

    Y. Ge, R. Jing and F. Pacard, Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal., 221 (2005), 251-302.doi: 10.1016/j.jfa.2004.09.011.

    [16]

    Y. Ge, R. Jing and F. Zhou, Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains, DCDS-A, 17 (2007), 751-770.doi: 10.3934/dcds.2007.17.751.

    [17]

    Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains, Communications in Partial Differential Equations, 35 (2010), 1419-1457.doi: 10.1080/03605302.2010.490286.

    [18]

    E. Hebey and M. Vaugon, Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth, J. Funct. Anal., 119 (1994), 298-318.doi: 10.1006/jfan.1994.1012.

    [19]

    J. Kazdan, F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597.doi: 10.1002/cpa.3160280502.

    [20]

    Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I., J. Differ. Equations, 120 (1995), 319-410.doi: 10.1006/jdeq.1995.1115.

    [21]

    R. Mazzeo and F. Pacard, Constant scalar curvature metrics with isolated singularities, J. Duke Math., 99 (1999), 353-418.doi: 10.1215/S0012-7094-99-09913-1.

    [22]

    A. M. Micheletti and A. Pistoia, On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth, Nonlinearity, 17 (2004), 851-866.doi: 10.1088/0951-7715/17/3/007.

    [23]

    M. Musso and A. Pistoia, Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains, J. Math. Pures Appl., 86 (2006), 510-528.doi: 10.1016/j.matpur.2006.10.006.

    [24]

    M. Musso and A. Pistoia, Sign changing solutions to a Bahri-Coron's problem in pierced domains, Discrete Contin. Dyn. Syst., 21 (2008), 295-306.doi: 10.3934/dcds.2008.21.295.

    [25]

    M. Musso and A. Pistoia, Persistence of Coron's solution in nearly critical problems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 331-357.

    [26]

    M. Musso and A. Pistoia, Tower of Bubbles for almost critical problems in general domains, J. Math. Pure Appl., 93 (2010), 1-40.doi: 10.1016/j.matpur.2009.08.001.

    [27]

    F. Pacard and T. Rivière, "Linear and Nonlinear Aspects of Vortices. The Ginzburg-Landau Model," Progress in Nonlinear Differential Equations and their Applications, 39 Boston, Birkhäuser, 2000.doi: 10.1007/978-1-4612-1386-4.

    [28]

    A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340.doi: 10.1016/j.anihpc.2006.03.002.

    [29]

    S. I. Pohozaev, Eigenfunction of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.

    [30]

    O. Rey, On a variational problem with lack of compactness: the effect of small holes in the domain, C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 349-352.

    [31]

    O. Rey, The role of the Green function in a nonlinear elliptic equation involving the critical Sobolev exponetion, J. Funct. Anal., 89 (1990), 1-52.doi: 10.1016/0022-1236(90)90002-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return