May  2013, 12(3): 1307-1319. doi: 10.3934/cpaa.2013.12.1307

The regularity for a class of singular differential equations

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received  February 2012 Revised  May 2012 Published  September 2012

We find an iteration technique and thus prove the optimal global regularity for the boundary value problem of a class of singular differential equations with strongly singular lower terms at the boundary. As applications, we obtain the regularity for the radial solutions of Ginzburg-Landau equations and harmonic maps.
Citation: Huaiyu Jian, Xiaolin Liu, Hongjie Ju. The regularity for a class of singular differential equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1307-1319. doi: 10.3934/cpaa.2013.12.1307
References:
[1]

F. Bethuel, H. Brezis and F. Helein, "Ginzburg-Landau Vortices," Birkhauser, 1993. doi: 10.1007/978-1-4612-0287-5.

[2]

K. Q. Chang, W. Y. Ding and R. G. Ye, Finite time blow-up of the heat flow of harmonic maps from spheres, J. Differential Geom., 36 (1992), 507-515.

[3]

T. R. Ding and C. Z. Li, "A Course on Ordinary Diferential Equations," Higher Educational Press, Beijing, 1991.

[4]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Seconder Order," Springer-Verlag, Berlin Heidelberg, 2001. doi: 10.1007/978-3-642-61798-0.

[5]

M. Guan, S. Gustafson and T. P. Tsai, Global existence and blow-up for harmonic map heat flow, J. Differential Equations, 246 (2009), 1-20. doi: 10.1016/j.jde.2008.09.011.

[6]

C. F. Gui, H. Y. Jian and H. J. Ju, Properties of translating solutions to mean curvature flow, Discrete Contin. Dyn. Syst., 28 (2010), 441-453. doi: 10.3934/dcds.2010.28.441.

[7]

R. M. Herve and M. Herve, Qualitative study of the real solutions of a differential equation associated with the Ginzburg-Landau equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 427-440.

[8]

H. Y. Jian, H. J. Ju and W. Sun, Traveling fronts of curve flow with external force field, Commun. Pure Appl. Anal., 9 (2010), 975-986. doi: 10.3934/cpaa.2010.9.975.

[9]

H. Y. Jian and Y. N. Liu, Ginzburg-Landau vortex and mean curvature flow with external force field, Acta Math. Sin. (Engl. Ser.), 22 (2006), 1831-1842. doi: 10.1007/s10114-005-0698-y.

[10]

H. Y. Jian and B. Song, Vortex dynamics of Ginzburg-Landau equations in inhomogeneous superconductors, J. Differential Equations, 170 (2001), 123-141. doi: 10.1006/jdeq.2000.3822.

[11]

H. Y. Jian and X. J. Wang, Bernsterin theorem and regularity for a class of Monge Amp\`ere equations, preprint, 2010.

[12]

H. Y. Jian and X. J. Wang, Global regularity for fully nonlinear singular elliptic equations, preprint, 2011.

[13]

H. Y. Jian and X. W. Xu, The vortex dynamics of a Ginzburg-Landau system under pinning effect, Science in China Ser. A, 46 (2003), 488-498. doi: 10.1007/BF02884020.

[14]

H. J. Ju, J. Lu and H. Y. Jian, Translating solutions to mean curvature flow with a forcing term in Minkowski space, Commun. Pure Appl. Anal., 9 (2010), 963-973. doi: 10.3934/cpaa.2010.9.963.

[15]

P. Mironescu , On the stability of radial solutions of the Ginzburg-Landau equations, J. Funct. Anal., 130 (1995), 334-344. doi: 10.1006/jfan.1995.1073.

[16]

P. Raphael and R. Schweyer, Stable blow-up dynamics for 1-corotational enenrgy critical harmonic heat flow, preprint, arXiv:1106.0914

show all references

References:
[1]

F. Bethuel, H. Brezis and F. Helein, "Ginzburg-Landau Vortices," Birkhauser, 1993. doi: 10.1007/978-1-4612-0287-5.

[2]

K. Q. Chang, W. Y. Ding and R. G. Ye, Finite time blow-up of the heat flow of harmonic maps from spheres, J. Differential Geom., 36 (1992), 507-515.

[3]

T. R. Ding and C. Z. Li, "A Course on Ordinary Diferential Equations," Higher Educational Press, Beijing, 1991.

[4]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Seconder Order," Springer-Verlag, Berlin Heidelberg, 2001. doi: 10.1007/978-3-642-61798-0.

[5]

M. Guan, S. Gustafson and T. P. Tsai, Global existence and blow-up for harmonic map heat flow, J. Differential Equations, 246 (2009), 1-20. doi: 10.1016/j.jde.2008.09.011.

[6]

C. F. Gui, H. Y. Jian and H. J. Ju, Properties of translating solutions to mean curvature flow, Discrete Contin. Dyn. Syst., 28 (2010), 441-453. doi: 10.3934/dcds.2010.28.441.

[7]

R. M. Herve and M. Herve, Qualitative study of the real solutions of a differential equation associated with the Ginzburg-Landau equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 427-440.

[8]

H. Y. Jian, H. J. Ju and W. Sun, Traveling fronts of curve flow with external force field, Commun. Pure Appl. Anal., 9 (2010), 975-986. doi: 10.3934/cpaa.2010.9.975.

[9]

H. Y. Jian and Y. N. Liu, Ginzburg-Landau vortex and mean curvature flow with external force field, Acta Math. Sin. (Engl. Ser.), 22 (2006), 1831-1842. doi: 10.1007/s10114-005-0698-y.

[10]

H. Y. Jian and B. Song, Vortex dynamics of Ginzburg-Landau equations in inhomogeneous superconductors, J. Differential Equations, 170 (2001), 123-141. doi: 10.1006/jdeq.2000.3822.

[11]

H. Y. Jian and X. J. Wang, Bernsterin theorem and regularity for a class of Monge Amp\`ere equations, preprint, 2010.

[12]

H. Y. Jian and X. J. Wang, Global regularity for fully nonlinear singular elliptic equations, preprint, 2011.

[13]

H. Y. Jian and X. W. Xu, The vortex dynamics of a Ginzburg-Landau system under pinning effect, Science in China Ser. A, 46 (2003), 488-498. doi: 10.1007/BF02884020.

[14]

H. J. Ju, J. Lu and H. Y. Jian, Translating solutions to mean curvature flow with a forcing term in Minkowski space, Commun. Pure Appl. Anal., 9 (2010), 963-973. doi: 10.3934/cpaa.2010.9.963.

[15]

P. Mironescu , On the stability of radial solutions of the Ginzburg-Landau equations, J. Funct. Anal., 130 (1995), 334-344. doi: 10.1006/jfan.1995.1073.

[16]

P. Raphael and R. Schweyer, Stable blow-up dynamics for 1-corotational enenrgy critical harmonic heat flow, preprint, arXiv:1106.0914

[1]

Yuanzhen Shao. Continuous maximal regularity on singular manifolds and its applications. Evolution Equations and Control Theory, 2016, 5 (2) : 303-335. doi: 10.3934/eect.2016006

[2]

Brahim Bougherara, Jacques Giacomoni, Jesus Hernández. Some regularity results for a singular elliptic problem. Conference Publications, 2015, 2015 (special) : 142-150. doi: 10.3934/proc.2015.0142

[3]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[4]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[5]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations and Control Theory, 2022, 11 (5) : 1489-1518. doi: 10.3934/eect.2021051

[6]

Amal Attouchi, Eero Ruosteenoja. Gradient regularity for a singular parabolic equation in non-divergence form. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5955-5972. doi: 10.3934/dcds.2020254

[7]

Chérif Amrouche, Yves Raudin. Singular boundary conditions and regularity for the biharmonic problem in the half-space. Communications on Pure and Applied Analysis, 2007, 6 (4) : 957-982. doi: 10.3934/cpaa.2007.6.957

[8]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[9]

Seongyeon Kim, Yehyun Kwon, Ihyeok Seo. Strichartz estimates and local regularity for the elastic wave equation with singular potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1897-1911. doi: 10.3934/dcds.2020344

[10]

Mounim El Ouardy, Youssef El Hadfi, Aziz Ifzarne. Existence and regularity results for a singular parabolic equations with degenerate coercivity. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 117-141. doi: 10.3934/dcdss.2021012

[11]

Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220

[12]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure and Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[13]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[14]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[15]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[16]

Shasha Zheng, Shaoheng Zhang. New approach to the singular solution of implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (11) : 3413-3427. doi: 10.3934/dcdss.2022149

[17]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks and Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

[18]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4397-4419. doi: 10.3934/dcds.2021041

[19]

Nam Q. Le. Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2199-2214. doi: 10.3934/dcds.2021188

[20]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]