May  2013, 12(3): 1341-1347. doi: 10.3934/cpaa.2013.12.1341

On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state

1. 

Universitat Pompeu Fabra, Dept. de Tecnologies de la Informació i les Comunicacions, C/Tànger 122-140, 08018 Barcelona, Spain

Received  April 2012 Revised  May 2012 Published  September 2012

We show that a pair of conjectures raised in [11] concerning the construction of normal solutions to the relativistic Boltzmann equation are valid. This ensures that the results in [11] hold for any range of positive temperatures and that the relativistic Euler system under the kinetic equation of state is hyperbolic and the speed of sound cannot overcome $c/\sqrt{3}$.
Citation: Juan Calvo. On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1341-1347. doi: 10.3934/cpaa.2013.12.1341
References:
[1]

M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," New York: Dover Publications, 1972.

[2]

J. L. Anderson and H. R. Witting, A relativistic relaxation-time model for the Boltzmann equation, Physica, 74 (1974), 466-488. doi: 10.1016/0031-8914(74)90355-3.

[3]

A. Bellouquid, J. Calvo, J. Nieto and J. Soler, On the relativistic BGK-Boltzmann model: asymptotics and hydrodynamics, to appear in Journal of Statistical Physics.

[4]

C. Cercignani and G. Medeiros Kremer, "The Relativistic Boltzmann Equation: Theory and Applications," Birkhäuser, Berlin, 2003. doi: 10.1007/978-3-0348-8165-4_2.

[5]

S. R. De Groot, W. A. van Leuwen and Ch. G. van Weert, "Relativistic Kinetic Theory. Principles and Applications," North Holland, Amsterdam, 1980.

[6]

M. Kunik, S. Qamar and G. Warnecke, Kinetic schemes for the relativistic gas dynamics, Numer. Math., 97 (2004), 159-191. doi: 10.1007/s00211-003-0510-9.

[7]

A. Majorana, Relativistic relaxation models for a simple gas, J. Math. Phys., 31 (1990), 2042-2046. doi: 10.1063/1.528655.

[8]

C. Marle, Sur l'établissement des équations de l'hydrodynamique des fluides relativistes dissipatifs.I.- L'equation de Boltzmann relativiste, (French), Ann. Inst. H. Poincaré, 10 (1969), 67-127.

[9]

A.D. Rendall, Asymptotics of solutions of the Einstein equations with positive cosmological constant, Ann. Henri Poincaré, 5 (2004), 1041-1064. doi: 10.1007/s00023-004-0189-1.

[10]

J. Speck, The stabilizing effect of spacetime expansion on relativistic fluids with sharp results for the radiation equation of state, preprint: arXiv:1201.1963.

[11]

J. Speck and R. M. Strain, Hilbert expansion from the Boltzmann equation to relativistic fluids, Comm. Math. Phys., 304 (2011), 229-280. doi: 10.1007/s00220-011-1207-z.

[12]

J. L. Synge, "The Relativistic Gas," North Holland, Amsterdam, 1957.

show all references

References:
[1]

M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," New York: Dover Publications, 1972.

[2]

J. L. Anderson and H. R. Witting, A relativistic relaxation-time model for the Boltzmann equation, Physica, 74 (1974), 466-488. doi: 10.1016/0031-8914(74)90355-3.

[3]

A. Bellouquid, J. Calvo, J. Nieto and J. Soler, On the relativistic BGK-Boltzmann model: asymptotics and hydrodynamics, to appear in Journal of Statistical Physics.

[4]

C. Cercignani and G. Medeiros Kremer, "The Relativistic Boltzmann Equation: Theory and Applications," Birkhäuser, Berlin, 2003. doi: 10.1007/978-3-0348-8165-4_2.

[5]

S. R. De Groot, W. A. van Leuwen and Ch. G. van Weert, "Relativistic Kinetic Theory. Principles and Applications," North Holland, Amsterdam, 1980.

[6]

M. Kunik, S. Qamar and G. Warnecke, Kinetic schemes for the relativistic gas dynamics, Numer. Math., 97 (2004), 159-191. doi: 10.1007/s00211-003-0510-9.

[7]

A. Majorana, Relativistic relaxation models for a simple gas, J. Math. Phys., 31 (1990), 2042-2046. doi: 10.1063/1.528655.

[8]

C. Marle, Sur l'établissement des équations de l'hydrodynamique des fluides relativistes dissipatifs.I.- L'equation de Boltzmann relativiste, (French), Ann. Inst. H. Poincaré, 10 (1969), 67-127.

[9]

A.D. Rendall, Asymptotics of solutions of the Einstein equations with positive cosmological constant, Ann. Henri Poincaré, 5 (2004), 1041-1064. doi: 10.1007/s00023-004-0189-1.

[10]

J. Speck, The stabilizing effect of spacetime expansion on relativistic fluids with sharp results for the radiation equation of state, preprint: arXiv:1201.1963.

[11]

J. Speck and R. M. Strain, Hilbert expansion from the Boltzmann equation to relativistic fluids, Comm. Math. Phys., 304 (2011), 229-280. doi: 10.1007/s00220-011-1207-z.

[12]

J. L. Synge, "The Relativistic Gas," North Holland, Amsterdam, 1957.

[1]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[2]

Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic and Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345

[3]

Yan Yong, Weiyuan Zou. Macroscopic regularity for the relativistic Boltzmann equation with initial singularities. Kinetic and Related Models, 2019, 12 (5) : 945-967. doi: 10.3934/krm.2019036

[4]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[5]

Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141

[6]

Philippe G. LeFloch, Seiji Ukai. A symmetrization of the relativistic Euler equations with several spatial variables. Kinetic and Related Models, 2009, 2 (2) : 275-292. doi: 10.3934/krm.2009.2.275

[7]

Meixiang Huang, Zhi-Qiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure and Applied Analysis, 2016, 15 (1) : 127-138. doi: 10.3934/cpaa.2016.15.127

[8]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure and Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[9]

Yachun Li, Xucai Ren. Non-relativistic global limits of the entropy solutions to the relativistic Euler equations with $\gamma$-law. Communications on Pure and Applied Analysis, 2006, 5 (4) : 963-979. doi: 10.3934/cpaa.2006.5.963

[10]

Xingwen Hao, Yachun Li, Zejun Wang. Non-relativistic global limits to the three dimensional relativistic euler equations with spherical symmetry. Communications on Pure and Applied Analysis, 2010, 9 (2) : 365-386. doi: 10.3934/cpaa.2010.9.365

[11]

Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic and Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383

[12]

Yachun Li, Qiufang Shi. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 763-778. doi: 10.3934/cpaa.2005.4.763

[13]

Van Duong Dinh. On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1127-1143. doi: 10.3934/dcds.2018047

[14]

Feng Wang, Jifeng Chu, Zaitao Liang. Prevalence of stable periodic solutions in the forced relativistic pendulum equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4579-4594. doi: 10.3934/dcdsb.2018177

[15]

Yuxia Guo, Shaolong Peng. Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1637-1648. doi: 10.3934/cpaa.2022037

[16]

Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041

[17]

Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure and Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029

[18]

Yonggeun Cho, Tohru Ozawa. On radial solutions of semi-relativistic Hartree equations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 71-82. doi: 10.3934/dcdss.2008.1.71

[19]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic and Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[20]

Stefano Marò. Relativistic pendulum and invariant curves. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]