[1]

K. A. Ames, L. E. Payne and P. W. Schaefer, Spatial decay estimates in timedependent Stokes flow, SIAM J. Math. Anal., 24 (1993), 13951413.

[2]

K. A. Ames and J. C. Song, Decay bounds for magnetohydrodynamic geophysical flow, Nonlinear Analysis, 65 (2006), 13181333.

[3]

S. Chiriţă and M. Ciarletta, Spatial behaviour of solutions in the plane Stokes flow, J. Math. Anal. Appl., 277 (2003), 571588.

[4]

C. O. Horgan, Plane steady flows and energy estimates for the NavierStokes equations, Arch. Rat. Mech. Anal., 68 (1978), 359381.

[5]

C. O. Horgan, Recent developments concerning SaintVenant's principle: An update, Appl. Mech. Rev., 42 (1989), 295303.

[6]

C. O. Horgan, Recent developments concerning SaintVenant's principle: A second update, Appl. Mech. Rev., 49 (1996), 101111.

[7]

C. O. Horgan and J. K. Knowles, Recent developments concerning SaintVenant's principle, in "Advances in Applied Mechanics'' (J. W. Hutchinson ed.), Academic Press, New York, 1983, Vol. 23, pp. 179269.

[8]

C. O. Horgan and L. T. Wheeler, Spatial decay estimates for the NavierStokes equations with application to the problem of entry flow, SIAM J. Appl. Math., 35 (1978), 97116.

[9]

Y. Li, Y. Liu, S. Luo and C. Lin, Decay estimates for the BrinkmanForchheimer equations in a semiinfinite pipe, Z. Angew. Math. Mech., 92 (2012), 160176.

[10]

C. Lin, Spatial decay estimates and energy bounds for the Stokes flow equations, Stability Appl. Anal. Contin. Media, 2 (1992), 249264.

[11]

C. Lin and L. E. Payne, Spatial decay bounds in the channel flow of an incompressible viscous fluid, Math. Models Methods Appl. Sci., 14 (2004), 795818.

[12]

R. Quintanilla, Spatial decay estimate for the hyperbolic heat equation, SIAM J. Math. Anal., 27 (1996), 7891.

[13]

J. C. Song, Decay estimates for steady magnetohydrodynamic pipe flow, Nonlinear Analysis, 54 (2003), 10291044.

[14]

J. C. Song, Improved decay estimates in timedependent Stokes flow, J. Math. Anal. Appl., 288 (2003), 505517.

[15]

J. C. Song, Improved spatial decay bounds in the plane Stokes flow, Appl. Math. Mech., 30 (2009), 833838.

[16]

J. C. Song, Spatial decay estimates in timedependent doublediffusive flow, J. Math. Anal. Appl., 267 (2001), 7688.

[17]

B. Straughan, "Stability and Wave Motion in Porous Media," SpringerVerlag, New York, 2008.

[18]

P. Vafeades and C. O. Horgan, Exponential decay estimates for solutions of the van Kármán equations on a semiinfinite strip, Arch. Rat. Mech. Anal., 104 (1988), 125.

[19]

A. Yoshizawa, "Hydrodynamic and Magnetohydrodynamic Turbulent Flows," Kluwer Academic Publishers, Dordrecht, 1998.

[20]

C. Zhao, Initial boundary value problem for the evolution system of MHD type describing geophysical flow in three dimensional domains, Math. Meth. Appl. Sci., 26 (2003), 759781.
