-
Previous Article
Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$
- CPAA Home
- This Issue
-
Next Article
Convexity of the free boundary for an exterior free boundary problem involving the perimeter
Energy conservative solutions to a nonlinear wave system of nematic liquid crystals
1. | Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States |
2. | Academy of Mathematics & Systems Science, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing 100190, China |
3. | Department of Mathematical Sciences, Yeshiva University, New York, NY 10033 |
References:
show all references
References:
[1] |
Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic and Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305 |
[2] |
Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019 |
[3] |
Xinglong Wu. On the Cauchy problem of a three-component Camassa--Holm equations. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2827-2854. doi: 10.3934/dcds.2016.36.2827 |
[4] |
Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065 |
[5] |
Chenghua Wang, Rong Zeng, Shouming Zhou, Bin Wang, Chunlai Mu. Continuity for the rotation-two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6633-6652. doi: 10.3934/dcdsb.2019160 |
[6] |
Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153 |
[7] |
David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597 |
[8] |
Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281 |
[9] |
Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613 |
[10] |
Wenxia Chen, Jingyi Liu, Danping Ding, Lixin Tian. Blow-up for two-component Camassa-Holm equation with generalized weak dissipation. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3769-3784. doi: 10.3934/cpaa.2020166 |
[11] |
Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243 |
[12] |
Kai Yan. On the blow up solutions to a two-component cubic Camassa-Holm system with peakons. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4565-4576. doi: 10.3934/dcds.2020191 |
[13] |
Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493 |
[14] |
Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459 |
[15] |
Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699 |
[16] |
Shouming Zhou, Shanshan Zheng. Qualitative analysis for a new generalized 2-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4659-4675. doi: 10.3934/dcdss.2021132 |
[17] |
Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112 |
[18] |
Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243 |
[19] |
Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067 |
[20] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]